• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações Diferenciais Separáveis

Equações Diferenciais Separáveis

Mensagempor Claudin » Dom Mai 26, 2013 11:17

a) Encontre a solução do problema de valor inicial

\left\{\begin{array}
\frac{dy}{dx} \left\{\begin{array}\frac{dy}{dx}= \frac{2x+1}{3y^2-3}\\
y(0)=0 
\end{array}\right.

OBS: O correto é dy/dx, não conseguir inserir no LateX corretamente.
1º passo: Multipliquei cruzado a equação.

(3y^2-3)dy=(2x+1)dx

2º passo: Integrei ambos os lados

\int_{}^{}(3y^2-3)dy=\int_{}^{}(2x+1)dx

Obtive

y^3-3y-x^2-x=c

Para encontrar a solução do PVI eu substituo 0 no y e x? Ou só no y?

b) Determine o intervalo de validade de solução.

Gostaria de uma explicação melhor sobre essa letra, pois não sei o que fazer.

c) Determine os pontos onde a solução tem um máximo local

d) Faça um esboço do gráfico
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equações Diferenciais Separáveis

Mensagempor Man Utd » Dom Jun 15, 2014 23:41

Claudin escreveu:

y^3-3y-x^2-x=c

Para encontrar a solução do PVI eu substituo 0 no y e x? Ou só no y?


Tem que substituir o valor para x e y ,perceba que a condição inicial é x=0 e y=0, então :

0^3-3*0-0^2-0=c

c=0


A solução do PVI é : y^3-3y-x^2-x=0





Claudin escreveu: b) Determine o intervalo de validade de solução.

Gostaria de uma explicação melhor sobre essa letra, pois não sei o que fazer.




Tem que usar o teorema de existência e unicidade para equações não lineares do tipo y'=f(x,y) :

temos que : \frac{2x+1}{3y^2-3} é continua no R^2 exceto nas linhas horizontais y= \pm 1 e a sua derivada em relação a y : -\frac{2 (1+2 x) y}{3 (-1+y^2)^2} tbm é continua no R^2 exceto nas linhas horizontais y= \pm 1 , então como o ponto (0,0) que é a condição inicial está dentro da continuidade , então existe solução e é única.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?