por anneliesero » Ter Jul 23, 2013 23:47
Olá, pessoal
nesta questão alguém pode explicar como cortou os números e letras me confundi toda neste cálculo.
Questão:
![{3}^{x}+\frac{1}{{3}^{x}}=\frac{4\sqrt[2]{3}}{3} {3}^{x}+\frac{1}{{3}^{x}}=\frac{4\sqrt[2]{3}}{3}](/latexrender/pictures/398523d6c99a808de9d82e355986c9ae.png)
Desenvolvimento:
I) [tex]\frac{4\sqrt[]{3}+- ({-4\sqrt[]{3y})}^{2} -4.3{y}^{2}.3}{6{y}^{2}}
II) [tex]\frac{4\sqrt[]{3y}+-16\sqrt[]{9y}-36}{6}
III) [tex]\frac{4\sqrt[]{3y}+-\sqrt[]{9.16y}-36}{6}
IV) [tex]\frac{4\sqrt[]{3y}+-\sqrt[]{3.4y}-1}{6}
V) [tex]\frac{4\sqrt[]{3y}+-2\sqrt[]{3y}-1}{6}
VI) [tex]\frac{4\sqrt[]{3}+-2\sqrt[]{3}-1}{6}
O que posso ter errado no desenvolvimento da questão? Sendo que a resposta é [tex]\sqrt[]{3} OU [tex]\frac{\sqrt[]{3}}{3}?
Agradeço quem ajudar!
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
-
anneliesero
- Usuário Parceiro

-
- Mensagens: 86
- Registrado em: Qui Set 13, 2012 17:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qua Jul 24, 2013 00:36
Não consegui entender seu desenvolvimento. Mas como você o tentou postar vou te ajudar. Veja que pra postar no formato TeX você tem que fechar a caixa [ tex]com [/ tex] .
Vamos a equação.
O primeiro passo é retirar o

, que é a incógnita, do denominador. Para facilitar a notação tome

de modo que uma vez calculado

podemos conhecer

. Assim,

No segundo passo tomamos

de modo que

Prosseguindo, chegamos a equação

que, via solução de equações de 2° grau, tem soluções

ou

.
Como

, então

.
Entende?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial???
por azheng » Sáb Nov 21, 2009 19:47
- 0 Respostas
- 1561 Exibições
- Última mensagem por azheng

Sáb Nov 21, 2009 19:47
Álgebra Elementar
-
- Equação Exponencial
por Adriana Baldussi » Seg Nov 23, 2009 14:41
- 3 Respostas
- 2720 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 17:07
Álgebra Elementar
-
- Equação Exponencial
por LeonardoSantos » Ter Fev 16, 2010 14:11
- 1 Respostas
- 2727 Exibições
- Última mensagem por Douglasm

Ter Fev 16, 2010 15:46
Funções
-
- Equação exponencial
por cristina » Sex Jun 04, 2010 20:19
- 1 Respostas
- 2172 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 00:27
Sistemas de Equações
-
- Equação exponencial
por nan_henrique » Sáb Jul 10, 2010 13:00
- 1 Respostas
- 2124 Exibições
- Última mensagem por Douglasm

Sáb Jul 10, 2010 13:12
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.