• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 1º grau

Equação do 1º grau

Mensagempor anneliesero » Qui Dez 27, 2012 19:11

Olá, pessoal!

Poderiam verificar onde está o erro? A resposta é 2.

\frac{X}{(7-X)}=\frac{2}5{}


Fiz assim:

1º - MMC de 7,5 que é 35x

2º Multipliquei por 35x desse jeito: 35x\frac{x}{7-x}= 35x\frac{2}{5}

3º - Dividi pelo denominador: 5x\frac{x}{7-x}= 7x\frac{2}{5}

4º- Ficou assim: 35(7-x)=14x

245-35x=14x

245=14x+35x

49x=245


x=5



Desde já agradeço! :)
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação do 1º grau

Mensagempor Cleyson007 » Qui Dez 27, 2012 19:22

Olá, boa noite!

Seu erro está no primeiro procedimento, o MMC correto é (7 - x)(5).

Corrija o erro e refaça os cálculos :y:

Dica: Se o problema for em encontrar o MMC, poderia multiplicar cruzado..

Bons estudos!

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação do 1º grau

Mensagempor anneliesero » Qui Dez 27, 2012 19:32

Obrigada, me ajudou muito! :-D
valeu!
:y:
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}