• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equacoes diferenciais

equacoes diferenciais

Mensagempor Thais Bomfim » Qua Dez 12, 2012 01:58

Seja a equaçao diferencial: y² dx + (xy + 1) dy = 0. Considere y > 0.
a) Mostre que a equaçao diferencial não é exata.
b)Determine o fator integrante.
c) Resolva a equaçao diferencial dada, transformando-a em exata atraves do fator integrante.
Thais Bomfim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 12, 2012 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: equacoes diferenciais

Mensagempor young_jedi » Qua Dez 12, 2012 11:39

partindo da equação

y^2dx+(xy+1)dy=0

podemos dividir tudo por dy

y^2.\frac{dx}{dy}+xy+1=0

agora dividindo tudo por y^2

\frac{dx}{dy}+\frac{1}{y}.x+\frac{1}{y^2}=0

\frac{dx}{dy}+\frac{1}{y}.x=-\frac{1}{y^2}

o fator integrante sera

e^{\int \frac{1}{y}.dy}=e^{ln(y)}

e^{ln(y)}=y

multiplicando a equação pelo fator integrante

y.\frac{dx}{dy}+x=-\frac{1}{y}

então a equação ficaria exata e poderia ser escrita como

(y.x)'=-\frac{1}{y}

lembrando que a derivada é em relação a y (e não a x como de costume)
agora é so aplicar integral com relação a y e resolver
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: equacoes diferenciais

Mensagempor Thais Bomfim » Qua Dez 12, 2012 14:02

Muito obrigada pela ajuda!
Thais Bomfim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Dez 12, 2012 01:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: