por RafaelPereira » Dom Dez 02, 2012 20:36
-
RafaelPereira
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Dez 02, 2012 17:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por e8group » Dom Dez 02, 2012 22:05
Note que ,

.
Reescrevendo a equação da seguinte forma ,

.
Multiplicando ambos lados por ,

. Vamos obter ,

.
Uma vez que as bases são iguais (e fixas) temos que seus respectivos expoentes são iguais ,então :

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por RafaelPereira » Seg Dez 03, 2012 00:50
Obrigado santhiago, pois pela sua resposta acabei percebendo qual foi o ponto em que eu estava errando e fazendo com que eu não achasse a solução.
Eu estava escrevendo a expressão
![{\left(\sqrt[5]{0,1296} \right)}^{2x} {\left(\sqrt[5]{0,1296} \right)}^{2x}](/latexrender/pictures/8b5f81037744529f248b690f595f9473.png)
, da forma
![{\left(\sqrt[5]{\frac{1296}{1000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{3}.{5}^{3}}} \right)}^{2x} {\left(\sqrt[5]{\frac{1296}{1000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{3}.{5}^{3}}} \right)}^{2x}](/latexrender/pictures/88e8d5d99596ada8e194968b8c6c4410.png)
,o que está errado. A forma correta é
![{\left(\sqrt[5]{\frac{1296}{10000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{4}.{5}^{4}}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{3}^{4}}{{5}^{4}}} \right)}^{2x} = {\left[\sqrt[5]{{\left(\frac{9}{25} \right)}^{2}} \right]}^{2x} {\left(\sqrt[5]{\frac{1296}{10000}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{2}^{4}.{3}^{4}}{{2}^{4}.{5}^{4}}} \right)}^{2x} = {\left(\sqrt[5]{\frac{{3}^{4}}{{5}^{4}}} \right)}^{2x} = {\left[\sqrt[5]{{\left(\frac{9}{25} \right)}^{2}} \right]}^{2x}](/latexrender/pictures/a0a8e8b1d05c31c88f090263499d4574.png)
.
Agora refiz os cálculos e bateu exatamente com o que você disse.
Vlw. Muito Obrigado.
-
RafaelPereira
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Dez 02, 2012 17:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação com Radical
por LAYLA » Qui Jun 07, 2018 21:14
- 1 Respostas
- 13751 Exibições
- Última mensagem por Gebe

Sáb Jun 09, 2018 10:28
Sistemas de Equações
-
- [função exponencial] Uma dúvida sobre equações exponenciais.
por amyss » Qui Jul 05, 2012 22:37
- 1 Respostas
- 1391 Exibições
- Última mensagem por Russman

Qui Jul 05, 2012 23:06
Funções
-
- Duvida Op. Radical
por Andrewo » Seg Mar 05, 2012 11:09
- 1 Respostas
- 2061 Exibições
- Última mensagem por MarceloFantini

Seg Mar 05, 2012 13:13
Álgebra Elementar
-
- Radical Duplo
por Rafael16 » Seg Jan 21, 2013 20:40
- 2 Respostas
- 3780 Exibições
- Última mensagem por Rafael16

Seg Jan 21, 2013 20:53
Aritmética
-
- Radical duplo
por Maria Livia » Sex Fev 22, 2013 00:10
- 1 Respostas
- 14309 Exibições
- Última mensagem por DanielFerreira

Sex Fev 22, 2013 01:11
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.