• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação]-FGV-SP

[Equação]-FGV-SP

Mensagempor SCHOOLGIRL+T » Sáb Nov 17, 2012 18:20

Na equação 1+\frac{1}{1+{x}^{2}}+\frac{1}{{(1+{x}^{2})}^{2}}+.....=2, o 1º membro é a soma dos termos de uma progressão geométrica infinita. A soma das raízes da equação é?
Não sei como se faz. Alguém me ajuda?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação]-FGV-SP

Mensagempor DanielFerreira » Sáb Nov 17, 2012 18:27

Primeiro membro: P.G

\\ \begin{cases} a_1 = 1 \\ q = \frac{1}{1 + x^2} \\ S_n = \end{cases} \\\\\\ S_n = \frac{a_1}{1 - q} \Rightarrow S_n = \frac{1}{1 - \frac{1}{1 + x^2}} \Rightarrow S_n = \frac{1}{\frac{x^2}{1 + x^2}} \Rightarrow \boxed{S_n = \frac{1 + x^2}{x^2}}


Daí,

\\ \frac{1 + x^2}{x^2} = 2 \\\\ 2x^2 = 1 + x^2 \\\\ x^2 = 1 \\\\ \boxed{\boxed{x = \pm 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação]-FGV-SP

Mensagempor SCHOOLGIRL+T » Dom Nov 18, 2012 12:18

danjr5 escreveu:Primeiro membro: P.G

\\ \begin{cases} a_1 = 1 \\ q = \frac{1}{1 + x^2} \\ S_n = \end{cases} \\\\\\ S_n = \frac{a_1}{1 - q} \Rightarrow S_n = \frac{1}{1 - \frac{1}{1 + x^2}} \Rightarrow S_n = \frac{1}{\frac{x^2}{1 + x^2}} \Rightarrow \boxed{S_n = \frac{1 + x^2}{x^2}}


Daí,

\\ \frac{1 + x^2}{x^2} = 2 \\\\ 2x^2 = 1 + x^2 \\\\ x^2 = 1 \\\\ \boxed{\boxed{x = \pm 1}}


Muito obrigada Danjr5. Ótima explicação!
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação]-FGV-SP

Mensagempor DanielFerreira » Dom Nov 18, 2012 13:09

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.