• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo de porcentagem

cálculo de porcentagem

Mensagempor ezidia51 » Dom Mar 25, 2018 16:27

Alguém poderia conferir se este cálculo de procentagem está correto?

Se o raio da base de um cilindro sofrer uma redução de 10% e sua
altura for aumentada em 20% qual será a alteração do volume em % ?
Para calcularmos a porcentagem usamos a fórmula do volume do cilindro
( V= π.r2..H ) sendo r =1 e H=1
Redução de 10% do raio =0,9
Aumento de 20% na altura =1,2
volume novo .
volume original
O volume novo é V= π.0, 9.r(original)2 .h(1.2)
O volume original é V= π.r(original)2 .h(original)
V= = =0,97133 ou 97,13%
π.(1)2.1
π.(0,9)2..1.2
3,14.12.1
3,14.(0,9)2..1.2
Deste modo ,o novo volume é 97,13% = 100%-97,13=2,87%
O cilindro teve o volume reduzido em 2,87% e esta foi a alteração 2,87%
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: cálculo de porcentagem

Mensagempor Gebe » Dom Mar 25, 2018 18:23

Nao consegui entender o que tu fez nesta parte:
ezidia51 escreveu:...
V= = =0,97133 ou 97,13%
π.(1)2.1
π.(0,9)2..1.2
3,14.12.1
3,14.(0,9)2..1.2


O desenvolvimento anterior a ela estava certo sim. A partir dali temos:

O volume novo:
V=\pi*\left( 0.9r(original) \right)^2*1.2h(original)\\
V=\pi*(0.9^2 *1.2)*\left(r(original) \right)^2 *h(original)\\
V=0.972*\pi*\left(r(original) \right)^2 *h(original)

O volume original:
V=\pi*\left(r(original) \right)^2 *h(original)

A relação entre os dois volumes (original e novo) nos da a parcela de aumento (ou redução do volume.
\frac{{V}_{novo}}{V_{original}}=\frac{0.972*\pi*\left(r(original) \right)^2 *h(original)}{\pi*\left(r(original) \right)^2 *h(original)}=\frac{0.972}{1}=0.972

Isso nos diz que o volume novo é 97.2% do valor original, logo houve uma redução volumetrica de (100%-97.2%), ou seja, 2.8%
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 128
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: cálculo de porcentagem

Mensagempor ezidia51 » Dom Mar 25, 2018 19:21

ok muito obrigada :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D