por ezidia51 » Dom Mar 25, 2018 16:22
Olá fiz este cálculo mas não sei se está correto.Alguém poderia me dizer se está certo?
![\sqrt[2]{\frac{20}{810}}=\sqrt[2]{\frac{2.2.5}{2.3.3.3.3.5}}=\sqrt[2]{\frac{2}{3^2.3^2}}=3.3\sqrt[2]{2}=9\sqrt[2]{2} \sqrt[2]{\frac{20}{810}}=\sqrt[2]{\frac{2.2.5}{2.3.3.3.3.5}}=\sqrt[2]{\frac{2}{3^2.3^2}}=3.3\sqrt[2]{2}=9\sqrt[2]{2}](/latexrender/pictures/2c0705dbd403ae9062fb2b2eac76b10b.png)
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Dom Mar 25, 2018 17:56
Só 1 erro.
Ao simplificar os dois termos "3²" que estavam na raiz tu passou eles ao numerador, quando deveriam permanecer no denominador. Deve ter sido por descuido.
Certo:
![\frac{1}{3*3}\sqrt[2]{\frac{2}{1} }=\frac{1}{9}\sqrt[2]{2} \frac{1}{3*3}\sqrt[2]{\frac{2}{1} }=\frac{1}{9}\sqrt[2]{2}](/latexrender/pictures/996e3ff51e6bfa39330cafb0acbac0ab.png)
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Dom Mar 25, 2018 19:31
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo das raízes
por nanasouza123 » Sex Set 22, 2017 21:06
- 0 Respostas
- 1116 Exibições
- Última mensagem por nanasouza123

Sex Set 22, 2017 21:06
Equações
-
- Calculo de raizes de uma função
por EREGON » Sex Nov 14, 2014 14:22
- 2 Respostas
- 2179 Exibições
- Última mensagem por adauto martins

Seg Jan 19, 2015 09:56
Funções
-
- Cálculo das raízes de um polinômio
por eu_dick1 » Ter Nov 11, 2014 23:42
- 0 Respostas
- 1538 Exibições
- Última mensagem por eu_dick1

Ter Nov 11, 2014 23:42
Polinômios
-
- [Calculo I] Limites envolvendo raízes.
por Jefferson_mcz » Seg Mar 18, 2013 14:00
- 1 Respostas
- 1600 Exibições
- Última mensagem por young_jedi

Seg Mar 18, 2013 20:35
Cálculo: Limites, Derivadas e Integrais
-
- CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES
por thiago15_2 » Qui Fev 27, 2014 01:20
- 1 Respostas
- 2336 Exibições
- Última mensagem por young_jedi

Sex Fev 28, 2014 15:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.