• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UFF - 2015.2) Matemática Básica

(UFF - 2015.2) Matemática Básica

Mensagempor edinaldoprof » Sex Ago 14, 2015 11:40

Gustavo está economizando moedas. Ele começou com duas e foi progredindo, conforme a tabela, durante 5 dias.
x.JPG
x.JPG (10.69 KiB) Exibido 1472 vezes

Relacione y a x.
edinaldoprof
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 14, 2015 11:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: (UFF - 2015.2) Matemática Básica

Mensagempor nakagumahissao » Sex Ago 14, 2015 13:24

Acredito que houve um erro ao se dizer que ele começou com 2, a não ser que haja o dia 0 = 2 moedas. Vou calcular conforme a tabela que você me forneceu.


Note que o número de moedas no primeiro dia era 5, no segundo era 8, no terceiro era 11 e assim por diante, ou seja, está aumentando de 3 em três. Assim:

1) Cálculo da tangente (inclinação da reta)

x representa os dias e y representa as moedas. Assim, usando (x, y) = (1, 5) e (x, y) = (2,8),

m = \frac{{y}_{1} - {y}_{0}}{{x}_{1} - {x}_{0}} = \frac{8 - 5}{2 - 1} = \frac{3}{1} \Rightarrow m = 3

2) Obtendo-se a equação que representa os dados da tabela:

y - {y}_{0} = m \left(x - {x}_{0} \right)

Utilizaremos o m obtido em 1 e o ponto \left({x}_{0}, {y}_{0} \right) = (1,5):

y - 5 = 3 \left(x - 1 \right) \Rightarrow y = 3x - 3 + 5 \Rightarrow

Finalmente, a Equação que desejamos é:

\Rightarrow y = 3x + 2



Por um outro lado, se utilizarmos os conhecimentos de Progresão Aritmética, podemos obter da seguinte forma:

a) A razão é 3, {a}_{1} = 5, n = x e {a}_{n} = y. Dessa maneira tem-se que:

{a}_{n} = {a}_{1} + (n - 1)r

y = 5 + (x - 1)3 = 5 + 3x - 3 \Rightarrow y = 3x + 2

Cujo resultado é o mesmo encontrado em 2 acima.

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59