• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(UFF - 2015.2) Matemática Básica

(UFF - 2015.2) Matemática Básica

Mensagempor edinaldoprof » Sex Ago 14, 2015 11:40

Gustavo está economizando moedas. Ele começou com duas e foi progredindo, conforme a tabela, durante 5 dias.
x.JPG
x.JPG (10.69 KiB) Exibido 1578 vezes

Relacione y a x.
edinaldoprof
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 14, 2015 11:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: (UFF - 2015.2) Matemática Básica

Mensagempor nakagumahissao » Sex Ago 14, 2015 13:24

Acredito que houve um erro ao se dizer que ele começou com 2, a não ser que haja o dia 0 = 2 moedas. Vou calcular conforme a tabela que você me forneceu.


Note que o número de moedas no primeiro dia era 5, no segundo era 8, no terceiro era 11 e assim por diante, ou seja, está aumentando de 3 em três. Assim:

1) Cálculo da tangente (inclinação da reta)

x representa os dias e y representa as moedas. Assim, usando (x, y) = (1, 5) e (x, y) = (2,8),

m = \frac{{y}_{1} - {y}_{0}}{{x}_{1} - {x}_{0}} = \frac{8 - 5}{2 - 1} = \frac{3}{1} \Rightarrow m = 3

2) Obtendo-se a equação que representa os dados da tabela:

y - {y}_{0} = m \left(x - {x}_{0} \right)

Utilizaremos o m obtido em 1 e o ponto \left({x}_{0}, {y}_{0} \right) = (1,5):

y - 5 = 3 \left(x - 1 \right) \Rightarrow y = 3x - 3 + 5 \Rightarrow

Finalmente, a Equação que desejamos é:

\Rightarrow y = 3x + 2



Por um outro lado, se utilizarmos os conhecimentos de Progresão Aritmética, podemos obter da seguinte forma:

a) A razão é 3, {a}_{1} = 5, n = x e {a}_{n} = y. Dessa maneira tem-se que:

{a}_{n} = {a}_{1} + (n - 1)r

y = 5 + (x - 1)3 = 5 + 3x - 3 \Rightarrow y = 3x + 2

Cujo resultado é o mesmo encontrado em 2 acima.

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: