por Pessoa Estranha » Dom Dez 08, 2013 18:34
Olá !
Estou com outro problema de interpretação. O exercício diz o seguinte:
"Dispomos de 8 cores e queremos pintar uma bandeira de 5 listras, cada listra com uma cor. De quantas formas isto pode ser feito ?"
A princípio, pensei que tínhamos 8 opções para cada listra e, então a resposta seria 8.8.8.8.8, porém está errado. Daí, percebi que duas listras juntas não poderiam ter a mesma cor (é claro). Por outro lado, a resolução sugere que seja feito 8.7.6.5.4, mas, pelo menos para mim, não ficou claro que todas as listras tinham que ter cores distintas umas das outras. Se estivesse escrito "..., cada listra com uma cor distinta. ..." então, estaria esclarecido que as cores não podiam ser repetidas. Eu estou errada ? Devia ter interpretado como cores todas distintas ? Por favor, ajudem-me.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por DanielFerreira » Ter Fev 11, 2014 13:53
Olá
Pessoa Estranha,
boa tarde!
A meu ver, não faz sentido pintar uma bandeira com 5 listras de uma única cor; portanto, arranjo ou combinação!
Supomos que a 1ª listra esteja na cor azul e a 5ª na cor verde, se a ordem for inversa, elas serão distintas, e, não iguais; por isso, arranjo!

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Aritmética] Combinatória
por Pessoa Estranha » Qua Dez 04, 2013 22:18
- 2 Respostas
- 3352 Exibições
- Última mensagem por Pessoa Estranha

Qui Dez 05, 2013 14:50
Análise Combinatória
-
- [Aritmética] Combinatória
por Pessoa Estranha » Dom Dez 08, 2013 15:43
- 4 Respostas
- 4952 Exibições
- Última mensagem por Pessoa Estranha

Dom Dez 15, 2013 22:12
Aritmética
-
- [Aritmética] Combinatória
por Pessoa Estranha » Dom Dez 08, 2013 17:26
- 7 Respostas
- 4778 Exibições
- Última mensagem por BrunoLima

Qua Dez 18, 2013 16:10
Aritmética
-
- Aritmética- Duvida em questão do livro praticando aritmética
por wellkirby » Sex Ago 28, 2015 17:37
- 1 Respostas
- 3385 Exibições
- Última mensagem por wellkirby

Seg Set 07, 2015 23:15
Aritmética
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5484 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.