• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problema]Dúvida

[Problema]Dúvida

Mensagempor Lana » Ter Mai 07, 2013 16:47

(CEFET-2011)Um engenheiro tem R$ 1.942,00 para comprar os pisos de tipos A e B, sendo que o metro quadrado de A custa R$ 46,00 e o de B, R$ 32,00. Para encontrar as quantidades x e y , em metros quadrados, dos respectivos pisos, e gastar exatamente a quantia disponível, um matemático lhe propôs o seguinte enigma: “Para qualquer inteiro t ,há uma solução inteira, não necessariamente positiva, dada por:
x= 6797+\frac{32}{d}t e y=-9710-\frac{46}{d}t.
d=mdc(46,32)”.
Pode-se concluir, corretamente, que existe (m):
Gabarito:Somente duas soluções com valores positivos.

Não intendi o que seria esse t , e ao que devo iguala-lo.
Lana
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 24, 2013 19:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Compução
Andamento: cursando

Re: [Problema]Dúvida

Mensagempor Luis Gustavo » Ter Mai 07, 2013 18:32

Temos d=mdc(32,46)=2. Então:

x=6797+\dfrac{32}{2}t=6797+16t

x=-9710-\dfrac{46}{2}t=-9710-23t

Estas fórmulas, para qualquer t inteiro que você inserir nelas, irão gerar valores de x e y que satisfarão o problema do engenheiro. Mas note que estes valores nem sempre serão positivos, e nós queremos apenas valores positivos (ou nulos, já que o engenheiro pode não comprar nenhum piso de determinado tipo), pois é impossível comprar um número negativo de pisos. Vamos então ver para quais valores de t teremos x positivo:

6797+16t\ge0
16t\ge-6797
t\ge-\dfrac{6797}{16}


Note que -\dfrac{6797}{16}=-424,8125. Mas t deve ser inteiro, então vamos aproximar t\ge-\dfrac{6797}{16} como t\ge-424.

Agora vamos ver para que valores de t teremos y positivo:

-9710-23t\ge0
-23t\ge9710
23t\le-9710
t\le-\dfrac{9710}{23}

Temos -\dfrac{9710}{23}\cong-422,173, motivo pelo qual mais uma vez vamos aproximar t\le-\dfrac{9710}{23} como t\le-423.

Vamos ver o que fizemos até aqui:

  • Descobrimos que, para que x seja positivo, devemos ter t\ge-424.
  • Descobrimos que, para que y seja positivo, devemos ter t\le-423.

Mas precisamos que x e y sejam ambos positivos, isto é, t deve pertencer aos dois intervalos ao mesmo tempo. Então, devemos ter -424\le t \le-423. Só existem dois valores possíveis para t nesse intervalo: t=-424 ou t =-423. Logo, são duas soluções com valores positivos. O problema não pede, mas as soluções são as listadas abaixo:

Se t =-424\Rightarrow x=6797+16\times(-424)=6797-6784=13m^2 do piso A e y=-9710-23\times(-424)=-9710+9752=42m^2 do piso B.
Se t =-423\Rightarrow x=6797+16\times(-423)=6797-6768=29m^2 do piso A e y=-9710-23\times(-423)=-9710+9729=19m^2 do piso B.

Resposta: Pode-se concluir, corretamente, que existem duas soluções com valores positivos: (13,42) e (29,19).


Conseguiu entender todo o raciocínio?
Espero ter ajudado.
Att, Luis Gustavo.
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Problema]Dúvida

Mensagempor Lana » Ter Mai 07, 2013 19:55

Perfeitamente.
Grato pela atenção.
Abraços
Lana
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 24, 2013 19:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Compução
Andamento: cursando


Voltar para Aritmética

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?