por Shetach Hefker » Qui Jan 10, 2013 19:01
Olá amigos, alguém poderia me ajudar a resolver a seguinte demonstração? "Prove que todo número primo maior que 2 é impar". Não encontrei qualquer referência sobre esta questão, motivo pelo qual qualquer ajuda será bem vinda. Obrigado
-
Shetach Hefker
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 10, 2013 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qui Jan 10, 2013 20:38
todos os numeros pares são divisiveis por dois, portanto não podem ser primos alem do proprio 2
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Shetach Hefker » Qui Jan 10, 2013 20:45
young_jedi escreveu:todos os numeros pares são divisiveis por dois, portanto não podem ser primos alem do proprio 2
Olá young, ocorre o seguinte: tal assertiva deverá ser demonstrada. Por exemplo: "se n é par, então n^2 também é par". Dai demonstra-se que um número par é da forma n=2k e que (2K)^2 é igual a 4k^2, que é igual a 2(2k^2). Fazendo 2k^2 = z, temos 2z, que também é par. Estes procedimentos deverão ser adotados também para a resolução do enunciado que fiz em relação aos números primos. Sua colocação é consistente, mas falta a prova. É neste sentido que gostaria de contar com a ajuda de vocês.
Complementando, sei que tal resposta é baseada na conclusão por absurdo. Também verifica-se, através dos estudos de Euler, que nem todo número ímpar maior que 2 é primo. Mas a demonstração disso, teoricamente falando, é algo difícil. Há muitas demonstrações relativas as questões envolvendo números primos, mas com relação a este que fiz acima não encontrei uma demonstração.
Este exercício encontra-se na página 9, número 1, do livro "Análise Matemática - Geraldo Ávila" (tenho em pdf se precisar). A resposta do livro é bem evasiva: "Propomos aqui uma propriedade muito simples dos números primos. Nâo obstante isso, ela precisa ser demonstrada; e a demonstração pode ser feita por redução ao absurdo, confrontando a definição de número primo com a suposição de que o número primo em questão seja maior que 2".
Aí está o problema, como demonstrar?
-
Shetach Hefker
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 10, 2013 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qui Jan 10, 2013 22:13
bom vamos supor um numero primo maior que 2, dizemos que esse numero é x
agora se x é primo então ele é divisivel somente por si mesmo e por 1
agora vamos supor que x seja par portanto ele pode ser escrito como

onde k pode ser qualquer numero inteiro positivo, mais se dividirmos x por 2 teremos

como k é um numero inteiro então x é divisivel por 2, ou seja x é divisivel por ele mesmo, por 1 e por 2, portanto x não pode ser um numero primo.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Shetach Hefker » Qui Jan 10, 2013 22:48
young_jedi escreveu:bom vamos supor um numero primo maior que 2, dizemos que esse numero é x
agora se x é primo então ele é divisivel somente por si mesmo e por 1
agora vamos supor que x seja par portanto ele pode ser escrito como

onde k pode ser qualquer numero inteiro positivo, mais se dividirmos x por 2 teremos

como k é um numero inteiro então x é divisivel por 2, ou seja x é divisivel por ele mesmo, por 1 e por 2, portanto x não pode ser um numero primo.
Sua resposta é muito interessante, e consistente. Comparei seus argumentos com os princípios que norteiam os números primos e entendi que atendem perfeitamente as regras neles estabelecidas,senão vejamos: Dizemos que n é um número primo se seus únicos divisores positivos são a unidade e ele mesmo (isso ficou provado na sua demonstração). Caso contrário, dizemos que n é composto. Em outras palavras, um número natural n > 1 é primo se sempre que escrevermos n = a.b, com a.b E N, temos necessariamente a = 1; b = n ou a = n; b = 1. Consequentemente um número natural n > 1 é composto se existem a.b E N, com 1 < a < n e 1 < b < n, tais que n = a.b. Então com base no que respondeu, podemos concluir que: 1) O número 1 não e primo nem composto; 2) Se a E Z, a > 0, então ou a é primo, ou a é composto, ou a = 1; 3) O número 2 é o único natural par que é primo; 4) De acordo com a definição acima, para decidir se um dado número n é primo é necessário verificar a divisibilidade dele (o que foi feito por você) por todos os números naturais menores que ele, o que é extremamente trabalhoso a medida que avançamos na sequencia dos números naturais. De fato, se x fosse primo e como x > 2, não existiriam naturais a e b tais que x = ab, onde 1 < a < x e 1 < b < x. Portanto, x não é primo. Pra mim a solução é esta que você bem relatou. Solução por redução ao absurdo, mediante comparação com as propriedades do números pares/ímpares. Era isso!!! Só tenho a agradecer, foi muito útil e interessante o modo como bem delineou a resposta. Obrigado mesmo!
-
Shetach Hefker
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 10, 2013 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Questão] Numero primo
por iuggui » Ter Mai 29, 2018 20:42
- 1 Respostas
- 2616 Exibições
- Última mensagem por DanielFerreira

Qui Mai 31, 2018 11:46
Aritmética
-
- Como reconhecer se um número é primo?
por Kelvin Brayan » Dom Abr 24, 2011 15:16
- 2 Respostas
- 3436 Exibições
- Última mensagem por Kelvin Brayan

Dom Abr 24, 2011 16:28
Álgebra Elementar
-
- Subgrupo normal e numero primo
por EANDRIOLI » Qua Ago 06, 2014 23:47
- 1 Respostas
- 1798 Exibições
- Última mensagem por adauto martins

Qui Nov 27, 2014 12:13
Álgebra Elementar
-
- primo
por julio cesar gomes » Qui Mai 27, 2010 11:18
- 1 Respostas
- 1218 Exibições
- Última mensagem por MarceloFantini

Qui Mai 27, 2010 17:44
Progressões
-
- Desafio primo
por ckde » Ter Ago 24, 2010 12:08
- 1 Respostas
- 980 Exibições
- Última mensagem por alexandre32100

Ter Ago 24, 2010 15:39
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.