por Lucio » Sex Nov 02, 2012 19:47
Olá Colegas...
A média aritmética entre

,
![\sqrt[]{{3}^{40}} \sqrt[]{{3}^{40}}](/latexrender/pictures/23be68ade85a47b1203dcb8204d7c07b.png)
e

é igual a?
A resposta é

Tentei resolver assim:

+
![\sqrt[]{{3}^{40}} \sqrt[]{{3}^{40}}](/latexrender/pictures/23be68ade85a47b1203dcb8204d7c07b.png)
+

=

=

Minha dúvida é a partir de agora, coloquei

porém não consigo chegar na resposta.
Desde já agradeço a atenção de todos
Um abraço
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por e8group » Sex Nov 02, 2012 20:09
Fiz assim ,

. Colocando o fator 3 em evidência no numerador e cancelando com o mesmo no denominador , fica :
Daí ,

.
Note q vc só esqueceu de dividir por três .
Em geral :
[tex\]bar{x} = \frac{ x_1 + x_2 + \hdots + x_n }{n}[/tex] .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lucio » Sex Nov 02, 2012 23:55
Santhiago, muito obrigado pelo seu auxílio.
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Prova por Indução] Progressão Aritmético-Geométrica
por MateusDantas1 » Qui Fev 16, 2012 15:07
- 10 Respostas
- 7191 Exibições
- Última mensagem por Victor Neumann

Qui Fev 23, 2012 21:57
Progressões
-
- P.A - Média
por DanielFerreira » Qua Jul 29, 2009 15:30
- 2 Respostas
- 2598 Exibições
- Última mensagem por DanielFerreira

Qui Jul 30, 2009 17:27
Progressões
-
- média
por Andreza » Qui Nov 24, 2011 13:03
- 3 Respostas
- 2499 Exibições
- Última mensagem por Neperiano

Sex Nov 25, 2011 10:15
Estatística
-
- média
por Italo de Souza » Sáb Out 11, 2014 11:09
- 4 Respostas
- 6688 Exibições
- Última mensagem por jcmatematica

Dom Out 12, 2014 02:27
Teoria dos Números
-
- Média Aritmética
por gustavowelp » Seg Jun 28, 2010 11:17
- 1 Respostas
- 2296 Exibições
- Última mensagem por Douglasm

Seg Jun 28, 2010 12:09
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.