por EREGON » Ter Mai 12, 2015 11:35
Olá,
gostaria de obter ajuda para o seguinte exercício.
Prove que

e

são primos entre si
Obrigado
Paulo
-
EREGON
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 10, 2014 16:00
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: informatica
- Andamento: cursando
por adauto martins » Qua Mai 13, 2015 13:38
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Mai 13, 2015 15:58
uma correçao....

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Mai 13, 2015 19:16
eita,mais uma correçao(erro federal esse meu...)

,pois o num.

nao e divisivel por 17...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por EREGON » Qui Mai 14, 2015 14:51
Olá,
obrigado. Existe alguma demonsttração a aplicar a este exercício(potencias) para provar o mesmo? Ou é só fazer as contas?
Porque o problema se põe em números com pontencias muito grandes, nestes casos, qual o melhor metodo para resolver?
Paulo
-
EREGON
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 10, 2014 16:00
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: informatica
- Andamento: cursando
por adauto martins » Qui Mai 14, 2015 19:44
caro EREGON,
tem o teorema de euler...mas pra usa-lo tem q. aprimorar o conhecimento de congruencias...

...onde

={

}...

eh o conjunto dos restos das divisoes dos inteiros por n...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Resto Divisão
por Cleyson007 » Dom Jul 05, 2009 19:55
- 1 Respostas
- 2035 Exibições
- Última mensagem por Cleyson007

Qua Jul 08, 2009 21:08
Polinômios
-
- Resto da divisão
por ronie_mota » Dom Jul 26, 2009 16:25
- 0 Respostas
- 2492 Exibições
- Última mensagem por ronie_mota

Dom Jul 26, 2009 16:25
Álgebra Elementar
-
- Resto da divisão
por thadeu » Qua Nov 18, 2009 19:22
- 2 Respostas
- 2359 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 17:02
Álgebra Elementar
-
- Resto de uma divisão
por baianinha » Seg Ago 29, 2011 12:20
- 1 Respostas
- 1841 Exibições
- Última mensagem por LuizAquino

Seg Ago 29, 2011 13:51
Álgebra Elementar
-
- Resto da divisão
por DanielFerreira » Dom Set 16, 2012 21:35
- 3 Respostas
- 3350 Exibições
- Última mensagem por DanielFerreira

Ter Set 18, 2012 20:56
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.