• Anúncio Global
    Respostas
    Exibições
    Última mensagem

congruência linear

congruência linear

Mensagempor Danilo » Qui Out 17, 2013 19:19

Resolver 240x \equiv 1 (mod17)

Bom, eu sei que a congruencia acima tem solução somente se o mdc (240,17) = 1. Queria saber um método de resolver este tipo de exercício... grato a quem puder ajudar!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: congruência linear

Mensagempor Man Utd » Qui Out 17, 2013 21:02

Danilo escreveu:Resolver 240x \equiv 1 (mod17)

Bom, eu sei que a congruencia acima tem solução somente se o mdc (240,17) = 1. Queria saber um método de resolver este tipo de exercício... grato a quem puder ajudar!


olá :)

temos duas maneiras de se resolver uma equação de congruência,ou resolver a equação diofantina 240x-17y=1,ou a seguinte maneira:

\\\\ 240x\equiv1 mod(17) \\\\ 240\equiv2mod(17) \\\\2x\equiv1 mod(17) \\\\ 16x\equiv 8 mod(17) \\\\ 16\equiv -1 mod(17) \\\\  -x\equiv8mod(17) \\\\ x\equiv -8mod(17) \\\\ -8\equiv 9 mod(17) \\\\ x\equiv 9mod(17)  \Leftrightarrow x=9+17y , y \in Z

como o mdc é 1,então temos somente uma solução:

x=9+17*0 \\\\ x=9
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: congruência linear

Mensagempor Danilo » Qui Out 17, 2013 21:48

Brigadão!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.