• Anúncio Global
    Respostas
    Exibições
    Última mensagem

lógica e matemática discreta

lógica e matemática discreta

Mensagempor ezidia51 » Seg Set 02, 2019 15:00

Por favor aluém poderia me ajudar e checar se estes exercícios estão corretos?Obrigado
Ex 1 Analise as afirmações abaixo e assinale a alternativa correta:
A equação x²=1 tem apenas uma solução inteira.
No conjunto Z dos números inteiros, o intervalo 2 < x < 5 tem infinitos pontos.
Todo número inteiro x satisfaz a relação x² > 0.
Apenas a afirmação III é verdadeira.

Apenas a afirmação I é verdadeira.

Todas as afirmações são falsas.

As afirmações I e II são verdadeiras.

Todas as afirmações são verdadeiras.

Ex 2-Analise as afirmações abaixo e assinale a alternativa correta:
(a + b)2 = a2 + b2, para a e b inteiros quaisquer.
1/2 + 1/2 = 2/4.
3² = (-3)2 implica 3 = -3
Todas as afirmações são falsas.

Apenas a afirmação III é falsa.

Apenas a afirmação II é falsa.

Apenas a afirmação I é falsa.

Nenhuma afirmação é falsa.

Ex 3-Analise as afirmações abaixo e assinale a alternativa correta:
Se a < b, então a2< b2, para todo a, b inteiros.
Se a2< b2, então a < b, para todo a, b inteiros.
Se a divide b e a divide c, então a divide b+c, com a, b, c inteiros.
Apenas a afirmação I é verdadeira.

Apenas a afirmação II é verdadeira.

As afirmações I e II são verdadeiras.

Nenhuma afirmação é verdadeira.

Apenas a afirmação III é verdadeira.

Ex 4-Analise as afirmações abaixo e assinale a alternativa correta:
Se n^2 é par então n é par (n número inteiro).
Para todo n inteiro, tem-se que n + 1 ≥ n.
Todas as afirmações são verdadeiras.

Apenas a afirmação II é verdadeira.

Todas as afirmações são falsas.

Apenas a afirmação I é verdadeira.

Ex 5 -Analise as afirmações abaixo e assinale a alternativa correta:
No conjunto dos inteiros tem-se que a + b = a + c implica b = c.
No conjunto dos naturais vale o mesmo que em I.
Apenas a afirmação II é verdadeira.

Apenas a afirmação I é verdadeira.

Todas as afirmações são falsas.

Todas as afirmações são verdadeiras.

Ex 6- Analise as afirmações abaixo e assinale a alternativa correta:
Todo número natural é um número inteiro.
Todo número inteiro é um número natural.
Apenas a afirmação II é verdadeira.

Apenas a afirmação I é verdadeira.

Todas as afirmações são verdadeiras.

Todas as afirmações são falsas.

Ex 7-Analise as afirmações abaixo e assinale a alternativa correta:
a ≤ b implica a < b e a = b.
a^2 = b2 implica a = b.
Se a divide b e b divide a, então a = b.
Todas as afirmações são verdadeiras.

Apenas a afirmação I é verdadeira.

Todas as afirmações são falsas.

Apenas a afirmação III é verdadeira.

As afirmações I e II são verdadeiras.

Ex 8-Analise as afirmações abaixo e assinale a alternativa correta:
Sendo a e b números inteiros e se a ≤ b, então a divide b.
Não existe nenhum número primo par.
Todo número divisível por 2 é também divisível por 4.
Apenas a afirmação III é verdadeira.

Apenas a afirmação II é falsa.

Apenas a afirmação II é verdadeira.

Todas as afirmações são falsas.

Todas as afirmações são verdadeiras.
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.