• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UFES

Questão da UFES

Mensagempor Ana29Carolina » Qui Mai 05, 2016 11:38

Na verdade essa questão não é de lógica, mas como não tinha nenhum com o assunto Divisibilidade, MMC ou MDC coloquei nesse mesmo. A questão diz o seguinte: João e Pedro percorrem uma pista de atletismo sempre no mesmo sentido. Cada um deles percorre 400 metros por volta completa. Ambos partiram juntos da linha de largada e se movem com velocidades constantes. A velocidade de João é 20 km/h e a de Pedro é 5 km/h. Para que, após a partida, João passe por Pedro 65 vezes, o número mínimo de voltas completas que João deve percorrer é ( a resposta correta é 87). O que consegui raciocinar é que a cada 4 voltas de João, Pedro dá 1 volta. Portanto se o problema quer saber o número de voltas para que João passe por Pedro 65 vezes dividi 65 por 4 e encontrei 16,25 (~17). Mas, e agora ? O que faço para encontrar 87 ?
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Cleyson007 » Sex Mai 06, 2016 13:43

Olá, boa tarde!

Temos um percurso de 400m. Como João desenvolve uma velocidade de 20 km/h, através da fórmula vm = ?S/?t constata-se que ele gasta 0,02.

Por outro lado, Pedro desenvolvendo a uma velocidade de 5 km/h gasta em 0,08 hora para completar o percurso.

Pensa comigo!

Quando João completar uma volta (0,02 h), Pedro terá percorrido (0,02) / (0,08) = 1/4 do percurso. Dessa forma, Pedro terá percorrido (1/4)*(400) = 100 m = 0,1 km.

Logo, a distância entre eles será de 100m.

Através da velocidade relativa, pode-se dizer que até se encontrarem, temos:

v(joao) - v(pedro) = ?s / ?t

20 - 5 = 0,1 / ?t
?t = 0,1 / 15
?t = 1 /150 h

Somando os tempos: (0,02)h + (1/150)h encontramos a demora deles até se encontrarem, a contar da largada. Ou seja, (2/100) + (1/150) = 4 /150

Como foram 65 encontros, pode-se dizer que:

t = (4/150) * (65)

t = (26/15) h

Relacionando o número de voltas com o tempo gasto, têm-se que:

Para João:

2/100 h ------------- 1 volta
26/15 h -------------- x

x = 260 / 3

x = 86,66 volta

Ou seja, no mínimo 87 voltas.

Qualquer dúvida estou a disposição.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:10

Entendi muito bem agora que explicou. Muito obrigada ! =)
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:10

Entendi muito bem agora que explicou. Muito obrigada ! =)
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:32

Me perdoe, mas no momento de copiar me surgiu uma dúvida: a fórmula não é Vm= ?S/?t ? Então 20=400/?t, que vai dar 20?t= 400, ?t vai ser igual a 20, não ? :?:
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D