• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UFES

Questão da UFES

Mensagempor Ana29Carolina » Qui Mai 05, 2016 11:38

Na verdade essa questão não é de lógica, mas como não tinha nenhum com o assunto Divisibilidade, MMC ou MDC coloquei nesse mesmo. A questão diz o seguinte: João e Pedro percorrem uma pista de atletismo sempre no mesmo sentido. Cada um deles percorre 400 metros por volta completa. Ambos partiram juntos da linha de largada e se movem com velocidades constantes. A velocidade de João é 20 km/h e a de Pedro é 5 km/h. Para que, após a partida, João passe por Pedro 65 vezes, o número mínimo de voltas completas que João deve percorrer é ( a resposta correta é 87). O que consegui raciocinar é que a cada 4 voltas de João, Pedro dá 1 volta. Portanto se o problema quer saber o número de voltas para que João passe por Pedro 65 vezes dividi 65 por 4 e encontrei 16,25 (~17). Mas, e agora ? O que faço para encontrar 87 ?
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Cleyson007 » Sex Mai 06, 2016 13:43

Olá, boa tarde!

Temos um percurso de 400m. Como João desenvolve uma velocidade de 20 km/h, através da fórmula vm = ∆S/∆t constata-se que ele gasta 0,02.

Por outro lado, Pedro desenvolvendo a uma velocidade de 5 km/h gasta em 0,08 hora para completar o percurso.

Pensa comigo!

Quando João completar uma volta (0,02 h), Pedro terá percorrido (0,02) / (0,08) = 1/4 do percurso. Dessa forma, Pedro terá percorrido (1/4)*(400) = 100 m = 0,1 km.

Logo, a distância entre eles será de 100m.

Através da velocidade relativa, pode-se dizer que até se encontrarem, temos:

v(joao) - v(pedro) = ∆s / ∆t

20 - 5 = 0,1 / ∆t
∆t = 0,1 / 15
∆t = 1 /150 h

Somando os tempos: (0,02)h + (1/150)h encontramos a demora deles até se encontrarem, a contar da largada. Ou seja, (2/100) + (1/150) = 4 /150

Como foram 65 encontros, pode-se dizer que:

t = (4/150) * (65)

t = (26/15) h

Relacionando o número de voltas com o tempo gasto, têm-se que:

Para João:

2/100 h ------------- 1 volta
26/15 h -------------- x

x = 260 / 3

x = 86,66 volta

Ou seja, no mínimo 87 voltas.

Qualquer dúvida estou a disposição.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:10

Entendi muito bem agora que explicou. Muito obrigada ! =)
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:10

Entendi muito bem agora que explicou. Muito obrigada ! =)
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Questão da UFES

Mensagempor Ana29Carolina » Seg Mai 09, 2016 17:32

Me perdoe, mas no momento de copiar me surgiu uma dúvida: a fórmula não é Vm= ΔS/Δt ? Então 20=400/Δt, que vai dar 20Δt= 400, Δt vai ser igual a 20, não ? :?:
Ana29Carolina
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 29, 2016 16:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.