• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Indução] Para todo n maior igual que 2

[Indução] Para todo n maior igual que 2

Mensagempor +danile10 » Dom Fev 17, 2013 13:07

Seja x um inteiro positivo.Demonstre que:

(1+x)^n > 1 + nx, para todo n \geq 2


Não estava conseguindo resolver este exercício, então fui olhar nas respostas do meu material:

Comecemos com verificar a condição PIF 1

P (2) = "(1+x)² > 1 + 2x"
P (2) = "1 + 2x + x² > 1 + 2x"
como x > 0, P(2) é verdadeira.

Logo, P(2) é verdadeira. Para verificar a condição PIF 2, devemos tomar um número natural positivo qualquer k \epsilon N e mostrar que vale a implicação
p (k) -> p(k+1). Em outras palavras, devemos supor que P(k) é verdadeira (hipótese indutiva) e mostrar que P(k+1) é verdadeira. Logo, a nossa hipótese indutiva é:

(1+x)^k > 1 + kx

Até aqui tudo bem, depois não entendi direito como proceder:

Usando a hipótese de indução, queremos demonstrar P(k+1), reescrevendo P(k+1) e usando a hipótese indutiva temos:

(1+x)^k+1 = (1+x)[(1+x)^k]
\geq (1+x)(1+ kx)
\geq 1 + kx + x + kx²
\geq 1 + (k + 1) x


Algúem poderia me ajudar a entender essa parte?
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Indução] Para todo n maior igual que 2

Mensagempor DanielFerreira » Dom Fev 17, 2013 13:54

Hipótese de indução: \boxed{(1 + x)^k > 1 + kx}

Quando P(k + 1), então:

\\ (1 + x)^{(k + 1)} > 1 + (k + 1)x \\\\ (1 + x)^k \cdot (1 + x)^1 > 1 + kx + x \\\\ (1 + x) \cdot \boxed{(1 + x)^k > 1 + kx} + 1

Podemos notar que (1 + x) > 1. Cqd!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Indução] Para todo n maior igual que 2

Mensagempor e8group » Dom Fev 17, 2013 14:40

Respodendo a sua dúvida ,devemos chegar em (1+x)^{k+1} >  1 + (k+1)x para mostra que o resultado também é verdadeiro p/k+1 . OK ?

Sabemos que (1+x)^{k+1} = (1+x)(1+x)^k . OK ?

Além disso ,como estamos supondo que P(k) é verdadeiro , isto é , (1+x)^k > 1 + kx ;multiplicando-se ambos membros da desigualdade por (1+x) ,(note que x é natural ,portanto (1+x) é sempre positivo ,então o 'sinal' da desigualdade se conserva )

segue que :


\hspace{10}        (1+x)\cdot (1+x)^n > (1+x)(1 + kx) .


Lembrando que (1+x)^{k+1} = (1+x)(1+x)^k


Teremos então :


\hspace{10}        (1+x)^{k+1} > (1+x)(1 + kx)


Aplicando a propriedade distributiva em (1+x)(1 + kx) ,


(1+x)(1 + kx)   =  1(1+kx) + x(1+kx) =  1 + kx + x + kx^2

Claramente 1 + kx + x + kx^2 > 1 + kx + x OK ? (note que kx^2 é positivo )

Sendo assim ,

\hspace{10}        (1+x)^{k+1} > (1+x)(1 + kx) 1 + kx + x + kx^2 > 1 + kx + x

Conclusão :

(1+x)^{k+1} >  1  + (1+k)x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D