por zenildo » Ter Jul 14, 2015 19:47
Um ônibus de 8 m de comprimento, deslocando-se com uma velocidade de 36 km/h atravessa uma ponte de 12 m de comprimento. Qual o tempo gasto pelo ônibus, em segundos, para atravessar totalmente a ponte?
a) 1
b) 2
c) 3
d) 4
Vm= ?r/?t ?3.6m/s= (r-r°)/?t?3.6m/s=(12-8)/?t??t=4/3.6, portanto: ?t=1s letra a.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
por nakagumahissao » Qua Jul 15, 2015 10:23
Zenildo,
Posso estar errado, mas ao meu ver, o enunciado diz "para atravessar totalmente a ponte". Assim, quando o ônibus chegar ao fim da ponte, somente a frente terá atingido os 12 metros, ficando ainda 8 metros de ônibus ainda para passar, ou seja, para que
todo o ônibus tenha passado, ele deverá ter percorrido os 12 metros de ponte + os seus 8 metros, ficando 20 metros de percurso e assim:

Vamos então transformar 36 km/h em metros por segundo. Assim:


Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Um ônibus...
por magaleao » Dom Dez 20, 2009 12:10
- 1 Respostas
- 1975 Exibições
- Última mensagem por Elcioschin

Seg Dez 21, 2009 18:17
Desafios Médios
-
- onibus
por junior_gyn » Seg Mai 09, 2011 00:45
- 1 Respostas
- 1845 Exibições
- Última mensagem por carlosalesouza

Seg Mai 09, 2011 09:14
Desafios Médios
-
- problema de pessoas no onibus
por hevhoram » Seg Mai 14, 2012 12:37
- 3 Respostas
- 2680 Exibições
- Última mensagem por DanielFerreira

Ter Mai 22, 2012 22:44
Álgebra Elementar
-
- [Lógica] Ônibus Lotado
por CJunior » Seg Out 06, 2014 15:52
- 3 Respostas
- 2025 Exibições
- Última mensagem por paulo testoni

Sáb Nov 01, 2014 16:35
Lógica
-
- Análise combinatória - Lugares ônibus
por rafapla » Seg Out 19, 2015 23:23
- 1 Respostas
- 7281 Exibições
- Última mensagem por DanielFerreira

Sáb Out 31, 2015 20:21
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.