• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Produto Tensorial] Tensores como aplicações lineares?

[Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sex Ago 17, 2012 22:05

Boa noite à todos no fórum. Estou trabalhando alguns exercícios de álgebra linear, e esbarrei com um problema que me gerou uma dúvida, possivelmente conceitual. A questão é a seguinte:

Mostre que para E = R^n e F = R^m temos:

L(E,F) = E^* \;\otimes\; F

Onde L(E,F) é o espaço das aplicações lineares de E em F, E* é o dual de E e o produto entre E* e F é o produto tensorial entre os espaços.

Tentativa:

A tentativa consiste em fazer uma dupla inclusão entre os espaços, i.e., demonstrar que dado um elemento qualquer de L(E,F), este também se encontra em prodT(E*,F) e vice-versa. Se temos uma aplicação A de R^n em R^m, como afirmar que A é igual a um elemento de prodT(E*,F)? Alguém teria alguma dica?

Desde já agradeço
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 00:38

O que você afirma não é verdade, estes dois espaços não são iguais. Entretanto, existe um isomorfismo entre eles, logo \mathcal{L}(E,F) \simeq E^{\ast} \otimes F. Não sei que resultados você tem ao seu dispor, mas se você notar que \dim E^{\ast} = \dim E = n, \dim F = m, \dim E^{\ast} \otimes F = \dim E^{\ast} \cdot \dim F = nm e \dim \mathcal{L}(E,F) = \dim E \cdot \dim F = nm, portanto \mathcal{L}(E,F) \simeq E^{\ast} \otimes F.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sáb Ago 18, 2012 08:45

Obrigado pela resposta. Justamente isso me incomodava. Apesar de precisar provar que são iguais, não conseguia motivo algum para poder afirmá-lo. Depois de ter postado, ainda tentei uma solução um pouco menos elegante: Construir uma bijeção entre os dois espaços.

Basicamente o que fiz foi associar uma aplicação A de L(E,F), com uma aplicação f de E^*\otimes F tal que:

f_A: R^n \rightarrow R \otimes R^m \; ; \;  \sum^n_{j=1}(\lambda_{j}.e_{i}) \mapsto \sum^m_{i=1}( \sum^n_{j=1}(\lambda_{j}.a_{ij}*1\otimes e_{i}))

onde os 1 \otimes e_{i} são base para R \otimes R^m

Deste modo associaremos cada aplic. de L(E,F) à uma de E^*\otimes F tal que eles levam vetores iguais em vetores de igual representação nas respectivas bases de seus contradomínios. Acha que seguir essa linha estaria correto?
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 12:16

Para mostrar que são isomorfos você precisa encontrar uma transformação linear invertível entre os dois espaços. Entretanto, acho que essa sua primeira tentativa de transformação não funciona. E lembre-se: estes dois espaços não são iguais!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?