• Anúncio Global
    Respostas
    Exibições
    Última mensagem

TRANSFORNAÇÃO LINEAR

TRANSFORNAÇÃO LINEAR

Mensagempor baianinha » Seg Fev 21, 2011 12:59

Sabendo que a matriz de uma transformação linear t:{P}_{2}(R)\rightarrow{M}_{2x2(R)}
nas bases a={ t, t+2,{t}^{2}} do {P}_{2}(R)   
  e B={\left[
\begin{vmatrix}
   1 & 1  \\ 
   0 & 0 
\end{vmatrix}
 \right],\left[
\begin{vmatrix}
   0 & 1  \\ 
   1 & 0 
\end{vmatrix}
 \right],\left[
\begin{vmatrix}
   0 & 0  \\ 
   1 & 1 
\end{vmatrix},}

 \right],\left[
\begin{vmatrix}
   0 & 0  \\ 
   1 & 2 
\end{vmatrix}
 \right],\left[T \right]A.B=
\begin{pmatrix}
   1 & 1 & 0  \\ 
   0 & 1 & 0  \\
   0 & 0 & -1  \\ 
   0 & 0 &  1
\end{pmatrix}

Como faço para encontrar a expressão de T (X,Y)?
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: TRANSFORNAÇÃO LINEAR

Mensagempor LuizAquino » Ter Fev 22, 2011 16:44

baianinha escreveu:Sabe-se que a matriz de uma transformação linear T:P_2(\mathbb{R}) \rightarrow M_{2\times 2}(\mathbb{R})

é dada por [T]_A^B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix},

considerando as bases A=\{ t,\, t+2,\, t^2\} de P_2(\mathbb{R}) e B=\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},\, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix},\, \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \right\} de M_{2\times 2}(\mathbb{R}).

Encontrar a expressão de T(p).


Do conhecimento de Álgebra Linear, sabemos que:

[T(p)]_B = [T]_A^B[p]_A

onde
[T(p)]_B - vetor de coordenadas de T(p) na base B;
[T]_A^B - matriz de T em relação as bases A e B;
[p]_A - vetor de coordenadas de p na base A;

Primeiro, vamos determinar quem é o vetor de coordenadas de p na base A. Sabemos que um polinômio de 2° grau é dado por p(t) = at^2 + bt + c. Nós queremos descobrir os escalares k1, k2 e k3 de modo que p(t) = k_1t + k_2(t+2) + k_3t^2. Arrumando essa equação e comparando os coeficientes dos polinômios, é fácil obter que k_1 = b - \frac{c}{2}, k_2 = \frac{c}{2}, k_3 = a. Portanto, temos que:
[p]_A = \begin{bmatrix} b -\frac{c}{2} \\ \frac{c}{2} \\ a \end{bmatrix}_A

Desse modo, obtemos que:
[T(p)]_B = [T]_A^B[p]_A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}_A^B \begin{bmatrix} b -\frac{c}{2} \\ \frac{c}{2} \\ a \end{bmatrix}_A = \begin{bmatrix} b \\ \frac{c}{2} \\ - a \\ a \end{bmatrix}_B

Escrevendo [T(p)]_B usando o vetor de coordenadas calculado e a base B dada, nós temos:

T(p) = b\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}  + \frac{c}{2}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - a\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + a\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}

T(p) = \begin{bmatrix} b & b+\frac{c}{2} \\ \frac{c}{2} & a \end{bmatrix}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.