• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[det(A + B)] é DIFERENTE de 0 então A ou B são invertíveis?

[det(A + B)] é DIFERENTE de 0 então A ou B são invertíveis?

Mensagempor jlr2906 » Sáb Set 01, 2018 05:03

Se det(A + B) é DIFERENTE de 0 então A ou B são invertíveis.
Vdd ou falso e demonstrar ou justificar o pq, pf?
jlr2906
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Set 01, 2018 04:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [det(A + B)] é DIFERENTE de 0 então A ou B são invertíve

Mensagempor adauto martins » Sex Mai 01, 2020 19:04

as matrizes A e B quadradas(pois,calcularemos seu determinante) e de mesma ordem...

det(A+B)\neq 0\Rightarrow \exists M/

(A+B).M=I...

onde M,quadrade e mesma ordem de A e B,
e I(matriz identidade)

como as matrizes A,B,M sao quadradas e de mesma ordem,
vale a propriedade associativa(MOSTRE ISSO),a saber

(A+B).M=A.M +B.M

logo nao podemos ter A e B ambas invertiveis,pois

A.M +B.M=I+I=2I\neq I...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1027
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59