• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaço Vetorial] Subespaço envolvendo matrizes

[Subespaço Vetorial] Subespaço envolvendo matrizes

Mensagempor hyge » Qua Mai 02, 2018 17:04

Seja, para x ∈ R, a matriz A(x) dada por:

[list=]\begin{pmatrix}
   1 & x & x^2  \\ 
   0 & 1 & 2x  \\
   0 & 0 & 1
\end{pmatrix}[/list]

a) Mostre que A(x+y) = A(x)*A(y), para x e y quaisquer.
b) Calcular o subespaço F de {M}_{3x3}(R), gerado pelo subconjunto {A(x), x ∈ R}. Pode explicitar F dando as equações que descrevem F ou
um sistema de geradores.

Nessa questão eu resolvi a letra A, no entanto, não estou conseguindo resolver a letra B. Não estou entendendo direito a pergunta e não to sabendo o passo inicial, gostaria que alguém me ajudasse, obrigado.
hyge
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 02, 2018 16:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Subespaço Vetorial] Subespaço envolvendo matrizes

Mensagempor adauto martins » Dom Mai 06, 2018 12:24

b)
A=\begin{pmatrix}
   1 & x & {x}^{2} \\ 
   0 & 1 & 2x \\
   0 & 0 & 1
\end{pmatrix}=\begin{pmatrix}
   1 & 0 & 0 \\ 
   0 & 1 & 0 \\
   0 & 0 & 1
\end{pmatrix}+x.\begin{pmatrix}
   0 & 1 & 0 \\ 
   0 & 0 & 2 \\
   0 & 0 & 0
\end{pmatrix}+{x}^{2}\begin{pmatrix}
   0 & 0 & 1 \\ 
   0 & 0 & 0 \\
   0 & 0 & 0
\end{pmatrix}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 702
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Subespaço Vetorial] Subespaço envolvendo matrizes

Mensagempor adauto martins » Dom Mai 06, 2018 12:28

ou mesmo:
A=\begin{pmatrix}
   1 & x & {x}^{2} \\ 
   0 & 1 & 2x \\
   0 & 0 & 1
\end{pmatrix}=\begin{pmatrix}
   1 & 0 & 0 \\ 
   0 & 1 & 0 \\
   0 & 0 & 1
\end{pmatrix}+x.\begin{pmatrix}
   0 & 1 & x \\ 
   0 & 0 & 2 \\
   0 & 0 & 0
\end{pmatrix}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 702
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: