• Anúncio Global
    Respostas
    Exibições
    Última mensagem

para cada vetor V o simétrico -V é único

para cada vetor V o simétrico -V é único

Mensagempor dkiwilson » Sáb Set 23, 2017 19:16

7. Mostre que em um espaço vetorial o vetor nulo é único e para cada vetor V o simétrico -V também é único.

Eu tenho a solução quando o vetor nulo é único, mas eu não sei responder quando para cada vetor V o simétrico -V também é único. Como eu faço nesse caso?

A estratégia padrão para provar afirmações do tipo "existe um único", é supor que existem dois objetos distintos que atendem a afirmação, mas no final provar que esses dois objetos na verdade são iguais. Isso é um tipo de prova que chamamos de redução ao absurdo.

Suponha que no espaço vetorial V existem dois elementos neutros distintos: u e v.

Desse modo, para qualquer vetor w em V temos que:
w + u = w
w + v = w

Isto é, temos que:
w + u = w + v

Ora, a partir disso concluímos que u = v. Mas isso é um absurdo, pois a hipótese inicial era que u e v são distintos.

Conclusão: em um espaço vetorial não pode haver dois elementos neutros distintos. Em outras palavras, o elemento neutro de um espaço vetorial é único.
dkiwilson
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Set 23, 2017 18:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Industrial
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)