• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas e planos

Retas e planos

Mensagempor desperadofull » Seg Jun 05, 2017 21:29

Estou com enormes duvidas em um exercício de matematica, infelizmente perdi muitas matérias e estou necessitando terminar esses para poder estudar para a prova...

Considere a reta s que passa pelo pontos A(3, -6, 3) e B(-1, 10, -5) e a reta r dada por r: x - 1 = 2 - y / 4 = z + 1 / 2 .
Podemos afirmar que:
Escolha uma:
a. As retas são coincidentes
b. As retas são reversas
c. As retas são paralelas distintas
d. O vetor diretor da reta s é paralelo ao vetor (2, 3, 5).
e. As retas são concorrentes

Dados os planos α: 8x – 7y + 7z – 7 = 0 e β: – 40x + 35y – 35z – 35 = 0, podemos afirmar que os planos são:
Escolha uma:
a. Paralelos Coincidentes
b. Ambos paralelos ao plano 8x – 7y + 7z – 7 = 0
c. Perpendiculares
d. Paralelos Distintos
e. Oblíquos

Considere o plano α: 18x + 5y + 1z + d = 0 onde
d = -27 e a reta r dada por .
Podemos afirmar que:
Escolha uma:
a. A reta está contida no plano.
b. A reta é oblíqua ao Plano
c. A reta é perpendicular ao plano
d. A reta é paralela ao plano
e. O vetor diretor da reta é paralelo ao vetor (18, 5, 1).

Sejam r e s retas, P um ponto e α e β planos. Associe da forma mais adequada:
Opções:
- Retas paralelas
- Planos concorrentes
- Retas concorrentes
- Planos perpendiculares
- Retas reversas
- Retas coincidentes
- Planos paralelos

1- Não existe plano que contenha r e s
2 - r e s possuem dois pontos distintos em comum
3 - r e s contidas em α e r ∩ s = Ø
4- α ∩ β = Ø
5- r ∩ s = {P}
6- α ∩ β = r
desperadofull
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 05, 2017 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemárica
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}