• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Verificação de Espaço Vetorial]

[Verificação de Espaço Vetorial]

Mensagempor Engenet » Qua Jan 11, 2017 13:36

Se V é um espaço vetorial sobre R e u, v e w estão em V, mostre que u + v = u + w \Rightarrow v = w.

Não entendi o que a questão pede. v = w é uma condição? Ou devo provar isso? Como resolver?
Editado pela última vez por Engenet em Qui Jan 12, 2017 21:03, em um total de 1 vez.
Engenet
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jan 11, 2017 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando

Re: [Verificação de Espaço Vetorial]

Mensagempor Engenet » Qui Jan 12, 2017 21:02

Respondendo minha própria pergunta:

Basta somarmos (-u) a igualdade e obtemos a resposta. Tão simples que desconfia.
Engenet
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jan 11, 2017 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Química
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.