• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove que o operador é inversível.

Prove que o operador é inversível.

Mensagempor ChrisMont » Seg Dez 12, 2016 00:56

Seja T: V-->V um operador linear T^k =0 para algum k\in N. Prove que para todo \alpha \neq 0 , o operador linear T- \alpha I é inversível.
ChrisMont
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 20, 2016 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Prove que o operador é inversível.

Mensagempor adauto martins » Ter Dez 13, 2016 10:37

por hipotese,temos que:
{T}^{k}=0\Rightarrow T=0...,logo:
det({T}^{k}-\alpha.I)=det({T}^{k})-det(\alpha.I)=0-\alpha.det(I)=-\alpha.1\neq 0...,onde det é o determinante das matrizes em questao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 667
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}