• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformação Linear

Transformação Linear

Mensagempor ChrisMont » Dom Dez 11, 2016 21:41

Consideremos uma transformação linear T:U-->V, onde U e V o são espaços sobre R tais que dimV<dimU<\infty . Prove que existe um elemento não nulo u E U tal que T(u)=0.
ChrisMont
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 20, 2016 17:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Transformação Linear

Mensagempor adauto martins » Ter Dez 27, 2016 14:25

se T:U\rightarrow V é injetiva,logo existirao finitos u \in U,u\neq 0 tal que:
T(u)=0...,se Tnao for injetiva cabe o mesma analise...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.