• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaço Vetorial] P(x), alguém ajuda?

[Subespaço Vetorial] P(x), alguém ajuda?

Mensagempor mayconlucas » Ter Nov 22, 2016 19:47

Alguem pode ajudar? Não estou conseguindo fazer a seguinte questão =/

Verifique, em cada caso, se W é um subespaço vetorial de R[x]:

a) W = {p(x) = a + bx + cx²; a,b,c pertence aos números inteiros};

b) W = {p(x) = a + bx + cx²; c = a + b};

c) W = {p(x) = a + bx + cx²; c \geq 0}.
mayconlucas
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Nov 09, 2015 09:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Subespaço Vetorial] P(x), alguém ajuda?

Mensagempor adauto martins » Sex Nov 25, 2016 11:00

a)
0 \in W,pois podemos ter:
0=0+0x+0{x}^{2}...
dados {p}_{1},{p}_{2} \in W /{p}_{1}={a}_{1}+{b}_{1}x+{c}_{1}{x}^{2},{p}_{2}={a}_{2}+{b}_{2}x+{c}_{2}{x}^{2}...{a}_{i},{b}_{i},{c}_{i}\in \Re,i=1,2...,teremos:{p}_{1}+{p}_{2}\in W,pois
{p}_{1}+{p}_{2}=({a}_{1}+{a}_{2})+({b}_{1}+{b}_{2})x+({c}_{1}+{c}_{2}){x}^{2}...({a}_{1}+{a}_{2}),({b}_{1}+{b}_{2}),({c}_{1}+{c}_{2}) \in \Re...
dados k,a,b,c \in \Re\Rightarrow k.p(x)\in \ W,pois:
k.p=(k.a)+(k.b)x+(k.c){x}^{2}...,onde ka,kb,kc \in \Re...
as demais letras seguem o mesmo padrao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Subespaço Vetorial] P(x), alguém ajuda?

Mensagempor mayconlucas » Sex Nov 25, 2016 11:19

Vlw msmo!! Ajudou muito!! Mto Obrigado.
mayconlucas
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Nov 09, 2015 09:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}