• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Congruência módulo

Congruência módulo

Mensagempor leticiapires52 » Seg Abr 04, 2016 11:20

Crie três problema-situações sobre congruência módulo m e resolva .
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Congruência módulo

Mensagempor adauto martins » Qua Abr 06, 2016 10:47

vou propor e fazer um exercicio,o qual ja o fiz aqui no site resolvendo-o de forma diferente dessa,q. usarei a aritmetica modular...
mostre q.o numero N={2013}^{2013}-{2015}^{2015}+2016é divisivel por 2014...
sol.
primeiramente farei:
{2013}^{2013}=({2014-1})^{2013}\equiv(-1)mod(2014)=2014.k-1...
o mesmo faz-se com {2015}^{2015}=({2014+1})^{2015}...
logo N=(k.2014-1)-(p.2014+1)+2014+2=k.2014-1-p.2014-1+2014+2=(k+p+1)2014=n.2014...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 702
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}