• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conceito de Transfomação Linear

Conceito de Transfomação Linear

Mensagempor Razoli » Sex Ago 28, 2015 18:28

Porque dois Espaços Vetoriais em uma transformações linear, tem que estar sobre o mesmo CORPO?
Razoli
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Abr 06, 2013 15:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Conceito de Transfomação Linear

Mensagempor e8group » Dom Ago 30, 2015 15:38

Como você já notou ,na definição já pede que ambos sejam esp. vetoriais sobre mesmo corpo .Suponha que um conjunto X tem estrutura de espaço vetorial sobre um corpo \mathbb{K} e que um conjunto Y tem estrutura de espaço vetorial sobre um corpo \mathbb{F} . Se qualquer subconjunto de Y não tiver estrutura de espaço vetorial sobre o corpo \mathbb{K} , então qualquer aplicação T : X \longrightarrow Y não satisfaz :

\forall \alpha , \beta \in \mathbb{K} , \forall x,y \in X   (T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) )    (*) .

(Pois , se T_0 : X  \longrightarrow Y , fosse uma aplicação satisfazendo tal propriedade , nesse caso o subconjunto T(X) \subset Y é um espaço vetorial sobre \mathbb{K} . (Verifique !) ) .

Além disso nota que (*) implica que \alpha T(x) \in  T(X) , \forall  \alpha \in \mathbb{K} , \forall x \in X . Ora ,nesse caso caso temos que ter uma aplicação bem definida (\alpha ,y ) \in  \mathbb{K} \times  T(X)   \mapsto  \alpha y  \in T(X) . Do contrário o segundo membro de (*) não faz sentido . Mas se Y não tiver estrutura de esp. vetorial sobre o mesmo corpo que o espaço de saida , o que garanti que pelo menos a aplicação acima pode ser bem definida ?x]

Outra pergunta que possa surgi tbm . E se , \mathbb{K}\cong \mathbb{F} ? Neste
caso há um homomorfismo \chi :  \mathbb{K} \longrightarrow \mathbb{F} .

Supondo que X tem dimensão finita , digamos n .Fixe uma base \{v_1 , \hdots\ , v_n } para X , e escolha de forma arbitrária n vetores em Y , digamos Tv_1 ,  \hdots , T v_n .

De cada vetor x \in X que se exprime unicamente como \sum_{i=1}^n \alpha^i(x) v_i     ( \alpha^i(x) \in \mathbb{K} ) ; a correspondência

x  \in X \mapsto  \sum_{i=1}^n \chi( \alpha^i(x)) Tv_i  \in Y define uma aplicação T : X \longrightarrow Y que satisfaz \forall  \zeta , \gamma \in \mathbb{K} \forall x, y \in X   :  T(\zeta x + \gamma y) = \chi(\zeta) Tx + \chi(\gamma) Ty

Em particular se \mathbb{K} for subcorpo de \mathbb{F} , basta tomar \chi como a inclusão i :   \beta \in  \mathbb{K}  \mapsto \beta \in \mathbb{F} que é claramente um homomorfismo . Nesse caso , vale \forall  \zeta , \gamma \in \mathbb{K} \forall x, y \in X   :  T(\zeta x + \gamma y) = \zeta Tx + \gamma Ty  (**) .Para evitar 'complicações' já refinamos e pedimos algo mais : Pedimos que ambos espaços vetoriais sejam sobre o mesmo corpo . Nota tbm que os exemplos mais interessantes em estudo são de espaços vetoriais sobre R ou C , principalmente os normados ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Conceito de Transfomação Linear

Mensagempor Razoli » Dom Ago 30, 2015 20:00

Obrigado!!! Consegui entender melhor agora!!
Razoli
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Abr 06, 2013 15:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D