• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra linear e transfomações lineares

algebra linear e transfomações lineares

Mensagempor bebelo32 » Qua Jun 10, 2015 17:56

1) Determinar o valor de K para que seja LI o conjunto

{ (-1,0,2),(1,1,1),(k,-2,0) }
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 63
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: algebra linear e transfomações lineares

Mensagempor DanielFerreira » Sáb Out 31, 2015 22:41

O conjunto será LI desde que o determinante da matriz formada pelos vetores seja diferente de zero. Vejamos:

\\ \begin{vmatrix}- 1 & 1 & k \\ 0 & 1 & - 2 \\ 2 & 1 & 0 \end{vmatrix} \neq 0 \\\\\\ 0 - 4 + 0 - 2k - 2  + 0 \neq 0 \\\\ -2k \neq 6 \\\\ \boxed{k \neq - 3}

Daí, S = \mathbb{R - } {- 3}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.