• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra linear e transfomações lineares

algebra linear e transfomações lineares

Mensagempor bebelo32 » Qua Jun 10, 2015 17:56

1) Determinar o valor de K para que seja LI o conjunto

{ (-1,0,2),(1,1,1),(k,-2,0) }
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: algebra linear e transfomações lineares

Mensagempor DanielFerreira » Sáb Out 31, 2015 22:41

O conjunto será LI desde que o determinante da matriz formada pelos vetores seja diferente de zero. Vejamos:

\\ \begin{vmatrix}- 1 & 1 & k \\ 0 & 1 & - 2 \\ 2 & 1 & 0 \end{vmatrix} \neq 0 \\\\\\ 0 - 4 + 0 - 2k - 2  + 0 \neq 0 \\\\ -2k \neq 6 \\\\ \boxed{k \neq - 3}

Daí, S = \mathbb{R - } {- 3}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}