• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra linear e transfomações lineares

algebra linear e transfomações lineares

Mensagempor bebelo32 » Qua Jun 10, 2015 17:56

1) Determinar o valor de K para que seja LI o conjunto

{ (-1,0,2),(1,1,1),(k,-2,0) }
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: algebra linear e transfomações lineares

Mensagempor DanielFerreira » Sáb Out 31, 2015 22:41

O conjunto será LI desde que o determinante da matriz formada pelos vetores seja diferente de zero. Vejamos:

\\ \begin{vmatrix}- 1 & 1 & k \\ 0 & 1 & - 2 \\ 2 & 1 & 0 \end{vmatrix} \neq 0 \\\\\\ 0 - 4 + 0 - 2k - 2  + 0 \neq 0 \\\\ -2k \neq 6 \\\\ \boxed{k \neq - 3}

Daí, S = \mathbb{R - } {- 3}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.