• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Linear -Transformação linear- Isomorfismo

Álgebra Linear -Transformação linear- Isomorfismo

Mensagempor anapaulasql » Ter Jan 27, 2015 22:08

Seja T:V-->W uma transformação linear injetora

i) Seja T:R³ --> R² definida por T(x,y,z)=(x+y+x, x-y+3z).
Encontre um subespaço V c R³ tal que a transformação linear definida por S: V --> R², S(x,y,z)= T(x,y,z)=(x+y+z, x-y+3z) seja injetora e sobrejetora.
anapaulasql
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 27, 2015 21:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Álgebra Linear -Transformação linear- Isomorfismo

Mensagempor adauto martins » Ter Mar 29, 2016 13:15

o nucleo de uma transformaçao linear é um subespaço da transformaçao(prove isso)...
logo S\subset {\Re}^{3}/T(S)=0...T(x,y,z)=(x+y+z,x-y+3z)=(0,0)\Rightarrow 
x=-y-z,x=y-3z\Rightarrow S={v=(x,y,z)\in {\Re}^{3}/y=z,x=-2y}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 671
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.