• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Linear -Transformação linear- Isomorfismo

Álgebra Linear -Transformação linear- Isomorfismo

Mensagempor anapaulasql » Ter Jan 27, 2015 22:08

Seja T:V-->W uma transformação linear injetora

i) Seja T:R³ --> R² definida por T(x,y,z)=(x+y+x, x-y+3z).
Encontre um subespaço V c R³ tal que a transformação linear definida por S: V --> R², S(x,y,z)= T(x,y,z)=(x+y+z, x-y+3z) seja injetora e sobrejetora.
anapaulasql
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 27, 2015 21:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Álgebra Linear -Transformação linear- Isomorfismo

Mensagempor adauto martins » Ter Mar 29, 2016 13:15

o nucleo de uma transformaçao linear é um subespaço da transformaçao(prove isso)...
logo S\subset {\Re}^{3}/T(S)=0...T(x,y,z)=(x+y+z,x-y+3z)=(0,0)\Rightarrow 
x=-y-z,x=y-3z\Rightarrow S={v=(x,y,z)\in {\Re}^{3}/y=z,x=-2y}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron