• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Algebra Linear] Soma de subespaços

[Algebra Linear] Soma de subespaços

Mensagempor pedro_kampos » Dom Ago 03, 2014 20:19

Pessoal tou com uma grande dúvida nessa questão, fiz até uma resolução mas não consigo achar a resposta certa

Imagem

Minha Humilde tentativa:

Imagem
pedro_kampos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Jul 14, 2014 04:23
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia da computacao
Andamento: cursando

Re: [Algebra Linear] Soma de subespaços

Mensagempor adauto martins » Seg Nov 10, 2014 16:02

1)2x-y+z-w=0,
x+2y+z+2w=0...escalonando...
2x-y+z-w=0,(3/2)y+(1/2)z+(3/2)w=0\Rightarrow y=-(z/3)z-w,...x=-z-3w,faz-se z=\alpha,e w=\beta...
{U}_{1}=((x,y,z,w)\in{\Re}^{4}/\alpha(-2/3,-1/3,1,0)+\beta(0,-1,0,1),\alpha\in\Re,\beta\in\Re)
2)x+7y+z+w=0,
x-y-z-3w=0......escalonando ...
x+7y+z+w=0,
-8y-3z-10w=0...resolvendo o sistema teremos:
[tex]{U}_{2}=((x,y,z,w)/\alpha(-5/8,-3/8,1,0)+\beta(0,-1/2,0,1))...
((-2/3,-1/3,1,0),(0,-1,0,1),(-5/8,-1/2,1,0),(0,-1/2,0,1))formam um conj. gerador de {U}_{1}+{U}_{2}...vamos buscar uma base L.I desse espaço gerado pelos vetores de {U}_{1}+{U}_{2}...
seja a matriz:
\begin{pmatrix}
   -2/3 & -1/3 & 1 & 0 \\
   0 & -1 & 0 & 1 \\ 
   -5/8 & -3/8 & 1 & 0 \\ 
    0 & -1/2 & 0 & 1 \\ 

  \end{pmatrix}
diagonizando e triangulando superiormente a matriz teremos:
\begin{pmatrix}
   1 & 1/2 & -3/2 & 0 \\
   0 & 1 & 15/2 & 0 \\ 
   0 & 0 & 1 & 0 \\ 
    0 & 0 & 0 & 1 \\ 

  \end{pmatrix},logo o conj.de vetores geradores ((1,1/2,-3/2,0),(0,1,15/2,0),(0,0,1,0),(0,0,0,1)) e LI e forma uma base para {U}_{1}+{U}_{2}...logo das respostas ,a q. mais tem a ver com a soluçao,e a letra B)a base canonica do {\Re}^{4}
obs.:costumo errar em contas numericas,entao seria bom fazer os calculos,mas o raciocinio e esse...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?