• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Coplanaridade

Coplanaridade

Mensagempor MtHenrique » Seg Mai 05, 2014 22:51

Verifique se os seguintes pontos são coplanares: A(2,2,1), B(3,1,2), C(2,3,0) e D (2,3,2);
MtHenrique
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 04, 2014 11:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica
Andamento: cursando

Re: Coplanaridade

Mensagempor e8group » Ter Mai 06, 2014 01:33

Em outras palavras , queremos verificar se estes pontos estão em um mesmo plano .Para tal , há mais de um método . Já aprendeu produto vetorial , interno ? Caso sim , uma forma é tomar o produto misto entre os três vetores construídos (usando todos os pontos dados ) e verificar o resultado. Caso não , veremos outra forma ...

Primeiro como definir a eq. de uma plano na forma paramétrica

Considere os pontos A, B , C(não colineares ) pertencendo a um plano \pi \subset \mathbb{R}^3 .
Podemos construir os vetores v_1 = \vec{AB}  ,  v_2 = \vec{AC} e ambos são paralelos a \pi .

Agora seja D um ponto qualquer deste plano [/tex] . Construímos o vetor \vec{AD} , vemos que \vec{AD} se exprimir como soma de dois vetores , um paralelo a v_1 e o outro a v_2 . Ou seja é ,
\vec{AD} = s v_1 + t v_2  (*) para s , t escalares .

Faça um esboço da situação descrita .

A relação acima nos permitir verificar se os pontos dados são coplanares .

Se o sistema (*) possui solução , então A,B,C,D estão em um mesmo plano . Caso contrário não .

Se você estudou também ,dependência, independência linear , de (*) , resulta que os vetores três vetores são L.D .
Outra forma seria verificar se os vetores são L.D. ou L.I. ...

Enfim , como disse mais de um método .

Se quiser ler mais , recomendo este material :

http://www.professores.uff.br/kowada/ga ... 1aula4.pdf
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}