Página 1 de 1

[Matrix do operador]

MensagemEnviado: Sáb Dez 14, 2013 14:37
por Tathiclau
Determine a matriz do operador de derivação D: Pn \rightarrow Pn relativamente a base {1,t,t²,...,{t}^{n}}.

Re: [Matrix do operador]

MensagemEnviado: Sáb Dez 14, 2013 17:01
por e8group
Comece notando que qualquer polinômio de grau menor ou igual a n é escrito como combinação linear dos n+1 monômios 1 ,t, \hdots , t^n . Denotando p_i(t) = t^i , i=0,\hdots ,n . Aplicando o operador de derivação ,segue

D(p_i) =   i \cdot t^{i-1}  =  \sum_{k=0}^n  \alpha_k t^k,onde \alpha_{i-1} = i e os demais escalares todos iguais a zero , desde que i > 0 . E se i =  0 todos escalares \alpha_k são iguais a zero .

Tente concluir .

Re: [Matrix do operador]

MensagemEnviado: Sáb Dez 14, 2013 17:32
por Tathiclau
santhiago escreveu:Comece notando que qualquer polinômio de grau menor ou igual a n é escrito como combinação linear dos n+1 monômios 1 ,t, \hdots , t^n . Denotando p_i(t) = t^i , i=0,\hdots ,n . Aplicando o operador de derivação ,segue

D(p_i) =   i \cdot t^{i-1}  =  \sum_{k=0}^n  \alpha_k t^k,onde \alpha_{i-1} = i e os demais escalares todos iguais a zero , desde que i > 0 . E se i =  0 todos escalares \alpha_k são iguais a zero .

Tente concluir .



Eu entendi o que vc fez mas a matriz do operador na base que ele deu eu não sei achar.

Re: [Matrix do operador]

MensagemEnviado: Sáb Dez 14, 2013 18:57
por e8group
Talvez a forma compacta de escrever a soma não te ajudou , expandimos ela então . Conforme já introduzido p_k(t) =t^k e D(p_k) = k \cdot t^{k-1} .Escrevendo D(p_k) como combinação linear dos p_k's ,teremos

D(p_0 (t))  =  0 \cdot 1 + 0 \cdot t + \hdots + 0 \cdot t^n

D(p_1(t))  = 1\cdot 1 + 0 \cdot t  + \hdots + 0 \cdot t^n
(...)

D(p_{n-1} (t)) = 0 \cdot 1 + \hdots +0 \cdot t^{n-3}+ (n-1) \cdot t^{n-2} + 0 \cdot t^{n-1} + 0 \cdot t^{n}

D(p_{n}) (t) = 0 \cdot 1 + \hdots + 0 \cdot t^{n-2} + n \cdot t^{n-1} + 0 \cdot t^n .

Agora tente avançar .

Re: [Matrix do operador]

MensagemEnviado: Sáb Dez 14, 2013 19:09
por Tathiclau
Entendi completamente agora, muito obrigada :-D