• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrix do operador]

[Matrix do operador]

Mensagempor Tathiclau » Sáb Dez 14, 2013 14:37

Determine a matriz do operador de derivação D: Pn \rightarrow Pn relativamente a base {1,t,t²,...,{t}^{n}}.
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Matrix do operador]

Mensagempor e8group » Sáb Dez 14, 2013 17:01

Comece notando que qualquer polinômio de grau menor ou igual a n é escrito como combinação linear dos n+1 monômios 1 ,t, \hdots , t^n . Denotando p_i(t) = t^i , i=0,\hdots ,n . Aplicando o operador de derivação ,segue

D(p_i) =   i \cdot t^{i-1}  =  \sum_{k=0}^n  \alpha_k t^k,onde \alpha_{i-1} = i e os demais escalares todos iguais a zero , desde que i > 0 . E se i =  0 todos escalares \alpha_k são iguais a zero .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matrix do operador]

Mensagempor Tathiclau » Sáb Dez 14, 2013 17:32

santhiago escreveu:Comece notando que qualquer polinômio de grau menor ou igual a n é escrito como combinação linear dos n+1 monômios 1 ,t, \hdots , t^n . Denotando p_i(t) = t^i , i=0,\hdots ,n . Aplicando o operador de derivação ,segue

D(p_i) =   i \cdot t^{i-1}  =  \sum_{k=0}^n  \alpha_k t^k,onde \alpha_{i-1} = i e os demais escalares todos iguais a zero , desde que i > 0 . E se i =  0 todos escalares \alpha_k são iguais a zero .

Tente concluir .



Eu entendi o que vc fez mas a matriz do operador na base que ele deu eu não sei achar.
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: [Matrix do operador]

Mensagempor e8group » Sáb Dez 14, 2013 18:57

Talvez a forma compacta de escrever a soma não te ajudou , expandimos ela então . Conforme já introduzido p_k(t) =t^k e D(p_k) = k \cdot t^{k-1} .Escrevendo D(p_k) como combinação linear dos p_k's ,teremos

D(p_0 (t))  =  0 \cdot 1 + 0 \cdot t + \hdots + 0 \cdot t^n

D(p_1(t))  = 1\cdot 1 + 0 \cdot t  + \hdots + 0 \cdot t^n
(...)

D(p_{n-1} (t)) = 0 \cdot 1 + \hdots +0 \cdot t^{n-3}+ (n-1) \cdot t^{n-2} + 0 \cdot t^{n-1} + 0 \cdot t^{n}

D(p_{n}) (t) = 0 \cdot 1 + \hdots + 0 \cdot t^{n-2} + n \cdot t^{n-1} + 0 \cdot t^n .

Agora tente avançar .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Matrix do operador]

Mensagempor Tathiclau » Sáb Dez 14, 2013 19:09

Entendi completamente agora, muito obrigada :-D
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}