Página 1 de 1

[Sub-espaço vetorial]

MensagemEnviado: Qua Dez 04, 2013 14:15
por JauM
Seja V um espaço vetorial. Dado um subconjunto S\neq\left[ \right] de V, provar que a intersecção
de todos os sub-espaços vetoriais de V que contêm S também é um sub-espaço vetorial
de V, sendo o menor sub-espaço de V que contém S.

Minha tentativa foi basicamente tentar a demonstração através da definição de sub-espaço, ou seja:

Seja W = { W1\capW2...\capWn} a intersecção de todos os sub-espaços vetoriais de V, tal que S \subsetW, temos:

a) 0 \in W, pois por hipotese W é sub-espaço, logo 0 \in S.

b) Seja u e v \in W. u + v \in W, logo u + v \in S.

c) Seja x \in \Re, e u \in W, logo xu \in W e portanto xu \in S.

Acho que essa demonstração está errada, e não sei como demonstrar que W é o menor sub-espaço de V. Se poderem me ajudar eu agradeço.

Re: [Sub-espaço vetorial]

MensagemEnviado: Qua Dez 04, 2013 16:15
por e8group
Bom na minha opinião você errou em dizer " w por hipótese é sub-espaço vetorial de V " ,pois queremos exatamente mostrar-se que W é sub-espaço vetorial de V . Seguindo sua linha de raciocínio , sejam

W_1 , \hdots , W_n sub-espaços vetoriais de V os quais contém o subconjunto S de V .Prosseguindo, o menor subconjunto de V que contém S é o próprio S ,mas não necessariamente ele será sub-espaço de V .Provando-se que interseção de sub-espaços é também sub-espaço, poderemos afirmar que W \subset V que contém S e estar contido em todos W_i's será o menor sub-espaço de V ,ou seja , W = W_1 \cap \hdots \cap W_n = \bigcap_{i=1}^{n} W_i .

Agora é só mostrar que W é sub-espaço de V .

Dica : Utilize a hipótese deW_1 , \hdots , W_n serem sub-espaços de V .

Re: [Sub-espaço vetorial]

MensagemEnviado: Qui Dez 05, 2013 14:37
por JauM
Valeu, muito obrigado pela ajuda.