• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sub-espaço vetorial]

[Sub-espaço vetorial]

Mensagempor JauM » Qua Dez 04, 2013 14:15

Seja V um espaço vetorial. Dado um subconjunto S\neq\left[ \right] de V, provar que a intersecção
de todos os sub-espaços vetoriais de V que contêm S também é um sub-espaço vetorial
de V, sendo o menor sub-espaço de V que contém S.

Minha tentativa foi basicamente tentar a demonstração através da definição de sub-espaço, ou seja:

Seja W = { W1\capW2...\capWn} a intersecção de todos os sub-espaços vetoriais de V, tal que S \subsetW, temos:

a) 0 \in W, pois por hipotese W é sub-espaço, logo 0 \in S.

b) Seja u e v \in W. u + v \in W, logo u + v \in S.

c) Seja x \in \Re, e u \in W, logo xu \in W e portanto xu \in S.

Acho que essa demonstração está errada, e não sei como demonstrar que W é o menor sub-espaço de V. Se poderem me ajudar eu agradeço.
JauM
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 03, 2013 22:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Matematica
Andamento: cursando

Re: [Sub-espaço vetorial]

Mensagempor e8group » Qua Dez 04, 2013 16:15

Bom na minha opinião você errou em dizer " w por hipótese é sub-espaço vetorial de V " ,pois queremos exatamente mostrar-se que W é sub-espaço vetorial de V . Seguindo sua linha de raciocínio , sejam

W_1 , \hdots , W_n sub-espaços vetoriais de V os quais contém o subconjunto S de V .Prosseguindo, o menor subconjunto de V que contém S é o próprio S ,mas não necessariamente ele será sub-espaço de V .Provando-se que interseção de sub-espaços é também sub-espaço, poderemos afirmar que W \subset V que contém S e estar contido em todos W_i's será o menor sub-espaço de V ,ou seja , W = W_1 \cap \hdots \cap W_n = \bigcap_{i=1}^{n} W_i .

Agora é só mostrar que W é sub-espaço de V .

Dica : Utilize a hipótese deW_1 , \hdots , W_n serem sub-espaços de V .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Sub-espaço vetorial]

Mensagempor JauM » Qui Dez 05, 2013 14:37

Valeu, muito obrigado pela ajuda.
JauM
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 03, 2013 22:01
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)