• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra linear

algebra linear

Mensagempor junior oliveira » Qua Jun 12, 2013 18:42

Verdadeiro ou Falso? No caso de ser verdadeiro provar a afirmativa e no caso de ser
falso exibir um contra-exemplo.
1. (-A)^t = -A^t;
2. (A + B)^t = B^t + A^t;
4. Se AB = 0, então A = 0 ou B = 0;
5. (k1A)(k2B) = (k1k2)AB;
6. (-A)(-B) = -(AB);
7.Se AB = 0, então BA = 0;
8. Se A2 = AA = 0, então A = 0;
9.Se for possível efetuar o produto AA, então A é uma matriz quadrada.


com a dedução, ta certo gente
junior oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 30, 2013 08:10
Formação Escolar: GRADUAÇÃO
Área/Curso: lic.fisica
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}