• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontre núcleo e imagem

Encontre núcleo e imagem

Mensagempor carlex28 » Seg Abr 22, 2013 10:10

Suponha que os vetores em {R}^{3} sejam escritos como matrizes 1x3 e defina T:{R}^{3\rightarrow}{R}^{3} por T:(x,y,z)=\left[x  y  z  \right][ -1 2 4 ]
3 0 1
2 2 5

a) Encontre uma base para o núcleo de T
b) Encontre uma base para a Imagem de T
carlex28
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 19, 2013 18:31
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}