• Anúncio Global
    Respostas
    Exibições
    Última mensagem

obter o sistema linear de temperatura e obter na forma AX=B

obter o sistema linear de temperatura e obter na forma AX=B

Mensagempor netochaves » Sáb Abr 06, 2013 18:20

A diferença de temperatura fornece a driving-force para a transferência de calor, por exemplo, entre dois corpos postos em contacto. O corpo mais frio aquece (a sua temperatura aumenta) e o corpo mais quente arrefece (a sua temperatura diminui). A 2ª Lei da Termodinâmica permite demonstrar que o calor só pode ser transferido espontaneamente do corpo mais quente para o corpo mais frio. O equilíbrio térmico estabelece-se entre os dois corpos quando as suas temperaturas atingem o mesmo valor. Ocorrerá fluxo (ou transferência) de calor até que a diferença de temperatura seja nula. Aliás, o conceito de temperatura e da sua medição, é baseado no princípio Zero da Termodinâmica que estabelece que quando dois corpos estão em equilíbrio térmico com um terceiro, então eles estão em equilíbrio térmico entre si. A relação entre a quantidade de calor transferida para um corpo (Q), e a consequente alteração na sua temperatura (ΔT) depende da capacidade térmica do corpo (C), a qual é função da massa do mesmo (m) e de uma propriedade termodinâmica do corpo denominada calor específico (cP):

Q/Δt = C = m. Cp


Em concreto massa, as tensões de tração são causadas por variações de temperatura. Porém, para cada variação de temperatura, a resultante tensão térmica de tração em diferentes casos não é sempre a mesma, sendo modificada pelas propriedades do concreto e pelo grau de restrição.
Em peça maciça de concreto, o concreto interior e exterior varia de temperatura e teor de umidade a diferentes graus e velocidades. Ocorrendo isso, o concreto interior restringe o concreto exterior de retrair-se e se desenvolvem tensões de tração que podem causar a fissuração do concreto exterior.
Uma solução é saber a temperaturatura em uma determinada placa que se utiliza para concreto massa, para ser tomado as devidas providências com relação a temperatura ideal a ser utilizada em construção civil.



Problema:
Resolver um problema temperatura em concreto massa que em determinadas regiões encontravam-se fora do padrão ABNT. Para isso leva-se em consideração a utilização de uma placa que foi utilizada para concreto massa, onde o objetivo é determinar o equilíbrio térmico em cada ponto desta amostra da placa. Sabe-se que essa placa é quadrada e de material homogêneo e é mantida com os bordos AC, BD, AB e CD com as temperaturas como indicadas nas figuras, com o uso de isolantes térmicos em A, B, C e D.



A figura da placa abaixo, vejam no site :

http://tinypic.com/view.php?pic=2n7ona&s=6










Questões:
Obter o sistema linear do sistema de temperatura e colocar na forma AX=B.

Determinar as temperaturas no interior do objeto.

Interprete os resultados. Você acredita neles? Os dados são reais? E se o formato da placa fosse diferente?
netochaves
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Abr 04, 2013 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}