• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço Vetorial

Espaço Vetorial

Mensagempor manuel_pato1 » Sáb Mar 02, 2013 20:03

Tenho um exercício no qual preciso apenas ''testar'' as 8 proriedades do espaço vetorial, para saber se, com um dado conjunto e com as operações delta e estrela, realmente é um espaço vetorial .

V= R²
\Delta: u\Deltav = (y1 + y2, x1 + x2)
* : a*u = (ax1, ax2)

-------------------------
na primeira propriedades que nos foi dada, tenho que: (u\Deltav)\Deltaw = u\Delta(v\Deltaw)

Bom, alguém pode me dizer se está certo o que eu fiz?

Como tenho que verificar essa igualdade, fiz assim :

(y1 + y2, x1+x2)\Delta(x3,y3) = ( x1,y1)\Delta((x2,y2) + (x3,y3))
((x1+x2)+y3, (y1+y2)+x3) = (x1,y1)\Delta(y2+y3,x2+x3)
((x1+x2)+y3 , (y1+y2)+x3) = ((x2+x3)+y1 , (y2+y3)+x1)

ou seja, não verifica.

Minha dúvida é a seguinte: quando tenho u\Delta(v\Deltaw) quando estiver entre v e w , tenho que colocar os termos de y no primeiro lugar do par, e os x no segundo lugar do par : (y2 + y3 , x2+x3) ??
Pergunto isso pq na operação delta incial foi o que foi feito entre v e u .
Desde já, obrigado.
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.


cron