• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço Vetorial

Espaço Vetorial

Mensagempor manuel_pato1 » Sáb Mar 02, 2013 20:03

Tenho um exercício no qual preciso apenas ''testar'' as 8 proriedades do espaço vetorial, para saber se, com um dado conjunto e com as operações delta e estrela, realmente é um espaço vetorial .

V= R²
\Delta: u\Deltav = (y1 + y2, x1 + x2)
* : a*u = (ax1, ax2)

-------------------------
na primeira propriedades que nos foi dada, tenho que: (u\Deltav)\Deltaw = u\Delta(v\Deltaw)

Bom, alguém pode me dizer se está certo o que eu fiz?

Como tenho que verificar essa igualdade, fiz assim :

(y1 + y2, x1+x2)\Delta(x3,y3) = ( x1,y1)\Delta((x2,y2) + (x3,y3))
((x1+x2)+y3, (y1+y2)+x3) = (x1,y1)\Delta(y2+y3,x2+x3)
((x1+x2)+y3 , (y1+y2)+x3) = ((x2+x3)+y1 , (y2+y3)+x1)

ou seja, não verifica.

Minha dúvida é a seguinte: quando tenho u\Delta(v\Deltaw) quando estiver entre v e w , tenho que colocar os termos de y no primeiro lugar do par, e os x no segundo lugar do par : (y2 + y3 , x2+x3) ??
Pergunto isso pq na operação delta incial foi o que foi feito entre v e u .
Desde já, obrigado.
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}