• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço vetorial

Espaço vetorial

Mensagempor oliveiramerika » Sáb Jan 19, 2013 10:03

Verifique se o vetor U é combinação linear (soma de múltiplos escalares) de V e W:
a) V= (9,-12,-6), W=(-1,7,1) e U= (-4,-6,2)

b) V=(5,4,-3), W=(2,1,1) e U= (-3,-4,1)
oliveiramerika
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 04, 2012 07:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Espaço vetorial

Mensagempor young_jedi » Dom Jan 20, 2013 09:29

se U é uma combinação do outros dois então

a.\overrightarrow{W}+b.\overrightarrow{V}=\overrightarrow{U}

substituindo os valores

a.(-1,7,1)+b(9,-12,-6)=(-4,-6,2)

ou seja

\begin{cases}-a+9b=-4\\7a-12b=-6\\a-6b=2\end{cases}

se existir um par (a,b) que satisfaça as tres equações simultaneamente então o vetor U é combinação dos outros dois, se não existir então não é.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59