• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Espaço vetorial

Espaço vetorial

Mensagempor oliveiramerika » Sáb Jan 19, 2013 10:03

Verifique se o vetor U é combinação linear (soma de múltiplos escalares) de V e W:
a) V= (9,-12,-6), W=(-1,7,1) e U= (-4,-6,2)

b) V=(5,4,-3), W=(2,1,1) e U= (-3,-4,1)
oliveiramerika
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Dez 04, 2012 07:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Espaço vetorial

Mensagempor young_jedi » Dom Jan 20, 2013 09:29

se U é uma combinação do outros dois então

a.\overrightarrow{W}+b.\overrightarrow{V}=\overrightarrow{U}

substituindo os valores

a.(-1,7,1)+b(9,-12,-6)=(-4,-6,2)

ou seja

\begin{cases}-a+9b=-4\\7a-12b=-6\\a-6b=2\end{cases}

se existir um par (a,b) que satisfaça as tres equações simultaneamente então o vetor U é combinação dos outros dois, se não existir então não é.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.