• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Transformação Linear] Nucleo e Imagem, ache a transformaçao

[Transformação Linear] Nucleo e Imagem, ache a transformaçao

Mensagempor vualas » Qua Nov 07, 2012 00:37

ACHE A TRANSFORMAÇÃO LINEAR:
T:R4->R4 tal que
Nuc(T): [(1,0,1,0),(-1,0,0,1)
Im(T): [(1,-1,0,2),(0,1,-1,0)]

como fazer??
vualas
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Nov 07, 2012 00:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Transformação Linear] Nucleo e Imagem, ache a transform

Mensagempor adauto martins » Qui Dez 15, 2016 08:00

temos que:
T(1,0,1,0)=T(-1,0,0,1)=(0,0,0,0),pois (1,0,1,0),(-1,0,0,1)\in NUC(T)...
e T({u}_{1})=(1,-1,0,2),T({u}_{2})=(0,1,-1,0),p/{u}_{1},{u}_{2}  $\not\in$ NUC(T)...logo podemos ter
p/ algum v \in IM(T):T(x,y,z,w)=x.T({u}_{1})+y.T({u}_{2})+z.(1,0,1,0)+w.(-1,0,0,1)=x.(1,-1,0,2)+y.(0,1,-1,0)+z(0,0,0,)+w.(0,0,0,0)\Rightarrow T(x,y,z,w)=(x,-x,0,2x)+(0,y,-y,0)=(x,-(x+y),-y,2x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Transformação Linear] Nucleo e Imagem, ache a transform

Mensagempor adauto martins » Qui Dez 15, 2016 11:12

uma correçao...editei errado...
T(x,y,z,w)=(x,-x,0,2x)+(0,y,-y,0)=(x,y-x,-y,2x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.