• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Algebra Linear]-transformação linear

[Algebra Linear]-transformação linear

Mensagempor Angel31 » Dom Out 28, 2012 10:10

Bom dia!
Quais são os passos para resolver esta questão?
1- Verifique se existem matrizes que :
a) transformam (1, 0) em (2, 5) e ( 0, 1) em (1, 3)?
Angel31
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Out 26, 2012 09:25
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: cursando

Re: [Algebra Linear]-transformação linear

Mensagempor young_jedi » Dom Out 28, 2012 11:03

monte a matriz de transformações e aplique nos pontos dados

\begin{bmatrix}a&b\\c&d\end{bmatrix}.\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}2\\5\end{bmatrix}

e

\begin{bmatrix}a&b\\c&d\end{bmatrix}.\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}1\\3\end{bmatrix}

resolvendo voce encontra valores para a, b, c e d que devem satisfazer o sistema para que a matriz exista.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron